Protein İkincil Yapı Tahmini Için Makine Öǧrenmesi Yöntemlerinin Karşılaştırılması
| dc.contributor.author | Aydin, Zafer | |
| dc.contributor.author | Kaynar, Oǧuz | |
| dc.contributor.author | Görmez, Yasin | |
| dc.contributor.author | Işik, Yunus Emre | |
| dc.date.accessioned | 2025-09-25T10:37:08Z | |
| dc.date.available | 2025-09-25T10:37:08Z | |
| dc.date.issued | 2018 | |
| dc.description | Aselsan; et al.; Huawei; IEEE Signal Processing Society; IEEE Turkey Section; Netas | en_US |
| dc.description.abstract | Three-dimensional structure prediction is one of the important problems in bioinformatics and theoretical chemistry. One of the most important steps in the three-dimensional structure prediction is the estimation of secondary structure. Due to rapidly growing databases and recent feature extraction methods datasets used for predicting secondary structure can potentially contain a large number of samples and dimensions. For this reason, it is important to use algorithms that are fast and accurate. In this study, various classification algorithms have been optimized for the second phase of a two-stage classifier on EVAset benchmark both in the original input space and in the space reduced using the information gain metric. The most accurate classifier is obtained as the support vector machine while the extreme learning machine is significantly faster in model training. © 2018 Elsevier B.V., All rights reserved. | en_US |
| dc.identifier.doi | 10.1109/SIU.2018.8404547 | |
| dc.identifier.isbn | 9781538615010 | |
| dc.identifier.issn | 2165-0608 | |
| dc.identifier.scopus | 2-s2.0-85050805627 | |
| dc.identifier.uri | https://doi.org/10.1109/SIU.2018.8404547 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/2926 | |
| dc.language.iso | tr | en_US |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
| dc.relation.ispartof | -- 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 -- Izmir; Altin Yunus Resort ve Thermal Hotel -- 137780 | en_US |
| dc.relation.ispartofseries | Signal Processing and Communications Applications Conference | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Feature Selection | en_US |
| dc.subject | Machine Learning | en_US |
| dc.subject | Protein Structure Prediction | en_US |
| dc.subject | Secondary Structure Prediction | en_US |
| dc.subject | Artificial Intelligence | en_US |
| dc.subject | Classification (Of Information) | en_US |
| dc.subject | Extraction | en_US |
| dc.subject | Feature Extraction | en_US |
| dc.subject | Forecasting | en_US |
| dc.subject | Proteins | en_US |
| dc.subject | Signal Processing | en_US |
| dc.subject | Classification Algorithm | en_US |
| dc.subject | Extreme Learning Machine | en_US |
| dc.subject | Feature Extraction Methods | en_US |
| dc.subject | Predicting Secondary Structure | en_US |
| dc.subject | Protein Secondary-Structure Prediction | en_US |
| dc.subject | Protein Structure Prediction | en_US |
| dc.subject | Secondary Structure Prediction | en_US |
| dc.subject | Three-Dimensional Structure | en_US |
| dc.subject | Learning Systems | en_US |
| dc.title | Protein İkincil Yapı Tahmini Için Makine Öǧrenmesi Yöntemlerinin Karşılaştırılması | en_US |
| dc.title.alternative | Comparison of Machine Learning Classifiers for Protein Secondary Structure Prediction | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 7003852510 | |
| gdc.author.scopusid | 36559569000 | |
| gdc.author.scopusid | 57195222392 | |
| gdc.author.scopusid | 57195215625 | |
| gdc.author.wosid | Işik, Yunus/Jep-8357-2023 | |
| gdc.author.wosid | Görmez, Yasin/Jef-8096-2023 | |
| gdc.author.wosid | Kaynar, Oguz/A-6474-2018 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Aydin] Zafer, Bilgisayar Mühendisliǧi, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Kaynar] Oǧuz, Yönetim Bilişim Sistemleri, Cumhuriyet Üniversitesi, Sivas, Turkey; [Görmez] Yasin, Yönetim Bilişim Sistemleri, Cumhuriyet Üniversitesi, Sivas, Turkey; [Işik] Yunus Emre, Yönetim Bilişim Sistemleri, Cumhuriyet Üniversitesi, Sivas, Turkey | en_US |
| gdc.description.endpage | 4 | en_US |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 1 | en_US |
| gdc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W2816725417 | |
| gdc.identifier.wos | WOS:000511448500400 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 2.0 | |
| gdc.oaire.influence | 2.8090938E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 3.5157008E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0301 basic medicine | |
| gdc.oaire.sciencefields | 03 medical and health sciences | |
| gdc.oaire.sciencefields | 0206 medical engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.fwci | 0.21420922 | |
| gdc.openalex.normalizedpercentile | 0.52 | |
| gdc.opencitations.count | 4 | |
| gdc.plumx.crossrefcites | 2 | |
| gdc.plumx.mendeley | 8 | |
| gdc.plumx.scopuscites | 3 | |
| gdc.scopus.citedcount | 3 | |
| gdc.virtual.author | Aydın, Zafer | |
| gdc.wos.citedcount | 0 | |
| relation.isAuthorOfPublication | a26c06af-eae3-407c-a21a-128459fa4d2f | |
| relation.isAuthorOfPublication.latestForDiscovery | a26c06af-eae3-407c-a21a-128459fa4d2f | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication | 52f507ab-f278-4a1f-824c-44da2a86bd51 | |
| relation.isOrgUnitOfPublication | ef13a800-4c99-4124-81e0-3e25b33c0c2b | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
