Protein İkincil Yapı Tahmini Için Makine Öǧrenmesi Yöntemlerinin Karşılaştırılması

dc.contributor.author Aydin, Zafer
dc.contributor.author Kaynar, Oǧuz
dc.contributor.author Görmez, Yasin
dc.contributor.author Işik, Yunus Emre
dc.date.accessioned 2025-09-25T10:37:08Z
dc.date.available 2025-09-25T10:37:08Z
dc.date.issued 2018
dc.description Aselsan; et al.; Huawei; IEEE Signal Processing Society; IEEE Turkey Section; Netas en_US
dc.description.abstract Three-dimensional structure prediction is one of the important problems in bioinformatics and theoretical chemistry. One of the most important steps in the three-dimensional structure prediction is the estimation of secondary structure. Due to rapidly growing databases and recent feature extraction methods datasets used for predicting secondary structure can potentially contain a large number of samples and dimensions. For this reason, it is important to use algorithms that are fast and accurate. In this study, various classification algorithms have been optimized for the second phase of a two-stage classifier on EVAset benchmark both in the original input space and in the space reduced using the information gain metric. The most accurate classifier is obtained as the support vector machine while the extreme learning machine is significantly faster in model training. © 2018 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1109/SIU.2018.8404547
dc.identifier.isbn 9781538615010
dc.identifier.issn 2165-0608
dc.identifier.scopus 2-s2.0-85050805627
dc.identifier.uri https://doi.org/10.1109/SIU.2018.8404547
dc.identifier.uri https://hdl.handle.net/20.500.12573/2926
dc.language.iso tr en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof -- 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 -- Izmir; Altin Yunus Resort ve Thermal Hotel -- 137780 en_US
dc.relation.ispartofseries Signal Processing and Communications Applications Conference
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Feature Selection en_US
dc.subject Machine Learning en_US
dc.subject Protein Structure Prediction en_US
dc.subject Secondary Structure Prediction en_US
dc.subject Artificial Intelligence en_US
dc.subject Classification (Of Information) en_US
dc.subject Extraction en_US
dc.subject Feature Extraction en_US
dc.subject Forecasting en_US
dc.subject Proteins en_US
dc.subject Signal Processing en_US
dc.subject Classification Algorithm en_US
dc.subject Extreme Learning Machine en_US
dc.subject Feature Extraction Methods en_US
dc.subject Predicting Secondary Structure en_US
dc.subject Protein Secondary-Structure Prediction en_US
dc.subject Protein Structure Prediction en_US
dc.subject Secondary Structure Prediction en_US
dc.subject Three-Dimensional Structure en_US
dc.subject Learning Systems en_US
dc.title Protein İkincil Yapı Tahmini Için Makine Öǧrenmesi Yöntemlerinin Karşılaştırılması en_US
dc.title.alternative Comparison of Machine Learning Classifiers for Protein Secondary Structure Prediction en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 7003852510
gdc.author.scopusid 36559569000
gdc.author.scopusid 57195222392
gdc.author.scopusid 57195215625
gdc.author.wosid Işik, Yunus/Jep-8357-2023
gdc.author.wosid Görmez, Yasin/Jef-8096-2023
gdc.author.wosid Kaynar, Oguz/A-6474-2018
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Aydin] Zafer, Bilgisayar Mühendisliǧi, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Kaynar] Oǧuz, Yönetim Bilişim Sistemleri, Cumhuriyet Üniversitesi, Sivas, Turkey; [Görmez] Yasin, Yönetim Bilişim Sistemleri, Cumhuriyet Üniversitesi, Sivas, Turkey; [Işik] Yunus Emre, Yönetim Bilişim Sistemleri, Cumhuriyet Üniversitesi, Sivas, Turkey en_US
gdc.description.endpage 4 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1 en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W2816725417
gdc.identifier.wos WOS:000511448500400
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.8090938E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.5157008E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0301 basic medicine
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0206 medical engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 0.21420922
gdc.openalex.normalizedpercentile 0.52
gdc.opencitations.count 4
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 8
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 3
gdc.virtual.author Aydın, Zafer
gdc.wos.citedcount 0
relation.isAuthorOfPublication a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isAuthorOfPublication.latestForDiscovery a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files