Beyond Visual Cues: Emotion Recognition in Images With Text-Aware Fusion

dc.contributor.author Sungur, Kerim Serdar
dc.contributor.author Bakal, Gokhan
dc.date.accessioned 2025-09-25T10:41:36Z
dc.date.available 2025-09-25T10:41:36Z
dc.date.issued 2025
dc.description Bakal, Mehmet/0000-0003-2897-3894 en_US
dc.description.abstract Sentiment analysis is a widely studied problem for understanding human emotions and potential outcomes. As it can be performed over textual data, working on visual data elements is also critically substantial to examining the current emotional status. In this effort, the aim is to investigate any potential enhancements in sentiment analysis predictions through visual instances by integrating textual data as additional knowledge reflecting the contextual information of the images. Thus, two separate models have been developed as image-processing and text-processing models in which both models were trained on distinct datasets comprising the same five human emotions. Following, the outputs of the individual models' last dense layers are combined to construct the hybrid multimodel empowered by visual and textual components. The fundamental focus is to evaluate the performance of the hybrid model in which the textual knowledge is concatenated with visual data. Essentially, the hybrid model achieved nearly a 3% F1-score improvement compared to the plain image classification model utilizing convolutional neural network architecture. In essence, this research underscores the potency of fusing textual context with visual information to refine sentiment analysis predictions. The findings not only emphasize the potential of a multi-modal approach but also spotlight a promising avenue for future advancements in emotion analysis and understanding. en_US
dc.identifier.doi 10.1016/j.displa.2024.102958
dc.identifier.issn 0141-9382
dc.identifier.issn 1872-7387
dc.identifier.scopus 2-s2.0-85213972328
dc.identifier.uri https://doi.org/10.1016/j.displa.2024.102958
dc.identifier.uri https://hdl.handle.net/20.500.12573/3370
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof Displays en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Sentiment Analysis en_US
dc.subject Hybrid Model en_US
dc.subject Image & Text Processing en_US
dc.subject Deep Learning en_US
dc.subject Deep Learning en_US
dc.title Beyond Visual Cues: Emotion Recognition in Images With Text-Aware Fusion en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Bakal, Mehmet/0000-0003-2897-3894
gdc.author.scopusid 59498595800
gdc.author.scopusid 57074041500
gdc.author.wosid Bakal, Mehmet Gokhan/Aat-2797-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Sungur, Kerim Serdar; Bakal, Gokhan] Abdullah Gul Univ, Dept Comp Engn, Erkilet Blvd Sumer Campus, TR-38080 Kayseri, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 102958
gdc.description.volume 87 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4406011794
gdc.identifier.wos WOS:001409063900001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.76058E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 4.328293E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 19.09362924
gdc.openalex.normalizedpercentile 0.95
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.virtual.author Bakal, Mehmet Gökhan
gdc.wos.citedcount 4
relation.isAuthorOfPublication 53ed538c-20d9-45c8-af59-7fa4d1b90cf7
relation.isAuthorOfPublication.latestForDiscovery 53ed538c-20d9-45c8-af59-7fa4d1b90cf7
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files