Prediction of Mechanical Properties of Coal From Non-Destructive Properties: A Comparative Application of MARS, ANN, and GA

dc.contributor.author Lawal, Abiodun Ismail
dc.contributor.author Oniyide, Gafar O.
dc.contributor.author Kwon, Sangki
dc.contributor.author Onifade, Moshood
dc.contributor.author Koken, Ekin
dc.contributor.author Ogunsola, Nafiu O.
dc.date.accessioned 2025-09-25T10:55:26Z
dc.date.available 2025-09-25T10:55:26Z
dc.date.issued 2021
dc.description Koken, Ekin/0000-0003-0178-329X; Ogunsola, Nafiu Olanrewaju/0000-0003-0341-9352 en_US
dc.description.abstract Rock properties are useful for safe operation and design of both surface and underground mines including civil engineering projects. However, the cost and time required to perform detailed assessments of rock properties are high. In addition, rock properties are required in numerical modeling. Different models have been proposed for quick and easy assessments of rock properties but majority of these models are regression-based, which are incapable of capturing inherent variabilities in rock properties. Therefore, this study proposed three different soft computing models (i.e., double input-single output ANN, multivariate adaptive regression spline, genetic algorithm) for accurate prediction of several mechanical properties of coal and coal-like rocks. The performances of the proposed models were statistically evaluated using various indices and they were found to predict rock properties suitably with very strong statistical indices. The proposed models were validated further using external datasets aside from those used in the model development to test the generalization potential of the models. The Pearson's correlation coefficients for the validation were close to 1, indicating that the proposed models can be used to assess geo-mechanical properties of coal, shale, and coal-bearing rocks. en_US
dc.description.sponsorship Korea Research Fellowship Program through the National Research Foundation of Korea (NRF) - Ministry of Science and ICT [2019H1D3A1A01102993]; Inha University en_US
dc.description.sponsorship This work was supported by the Korea Research Fellowship Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2019H1D3A1A01102993) and Inha University Research Grant (2021). en_US
dc.identifier.doi 10.1007/s11053-021-09955-w
dc.identifier.issn 1520-7439
dc.identifier.issn 1573-8981
dc.identifier.scopus 2-s2.0-85116502769
dc.identifier.uri https://doi.org/10.1007/s11053-021-09955-w
dc.identifier.uri https://hdl.handle.net/20.500.12573/4456
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Natural Resources Research en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Coal en_US
dc.subject Rock Properties en_US
dc.subject Mars en_US
dc.subject Soft Computing en_US
dc.subject Statistical Indices en_US
dc.title Prediction of Mechanical Properties of Coal From Non-Destructive Properties: A Comparative Application of MARS, ANN, and GA en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Koken, Ekin/0000-0003-0178-329X
gdc.author.id Ogunsola, Nafiu Olanrewaju/0000-0003-0341-9352
gdc.author.scopusid 57209584188
gdc.author.scopusid 56705465100
gdc.author.scopusid 56292897700
gdc.author.scopusid 57201993675
gdc.author.scopusid 57193992490
gdc.author.scopusid 57209577117
gdc.author.wosid Lawal, Abiodun/Aal-9241-2021
gdc.author.wosid Onifade, Moshood/G-5346-2019
gdc.author.wosid Ogunsola, Nafiu/Grj-7325-2022
gdc.author.wosid Köken, Ekin/Aaa-5063-2020
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Lawal, Abiodun Ismail; Kwon, Sangki] Inha Univ, Dept Energy Resources Engn, Incheon, South Korea; [Lawal, Abiodun Ismail; Oniyide, Gafar O.] Fed Univ Technol Akure, Dept Min Engn, Akure, Nigeria; [Onifade, Moshood] Univ Nambia, Dept Civil & Min Engn, POB 3624, Ongwediva, Namibia; [Koken, Ekin] Abdullah Gul Univ, Nanotechnol Engn Dept, TR-38100 Kayseri, Turkey; [Ogunsola, Nafiu O.] Jeonbuk Natl Univ, Dept Mineral Resources & Energy Engn, Jeonju Si, Jeollabuk Do, South Korea en_US
gdc.description.endpage 4563 en_US
gdc.description.issue 6 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 4547 en_US
gdc.description.volume 30 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W3201985900
gdc.identifier.wos WOS:000704624100001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 14.0
gdc.oaire.influence 3.2105287E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.6147906E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0105 earth and related environmental sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 2.23153877
gdc.openalex.normalizedpercentile 0.87
gdc.opencitations.count 15
gdc.plumx.crossrefcites 11
gdc.plumx.mendeley 7
gdc.plumx.scopuscites 24
gdc.scopus.citedcount 24
gdc.virtual.author Köken, Ekin
gdc.wos.citedcount 23
relation.isAuthorOfPublication 9352c019-c944-4e23-a8e2-c73fac861cb6
relation.isAuthorOfPublication.latestForDiscovery 9352c019-c944-4e23-a8e2-c73fac861cb6
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 03adf3b0-3511-421e-b492-8fe188140fc0
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files