Hedonic Price Models, Social Media Data and AI - An Application to the AirBNB Sector in US Cities
| dc.contributor.author | Osth, John | |
| dc.contributor.author | Turk, Umut | |
| dc.contributor.author | Kourtit, Karima | |
| dc.contributor.author | Nijkamp, Peter | |
| dc.date.accessioned | 2025-09-25T10:48:01Z | |
| dc.date.available | 2025-09-25T10:48:01Z | |
| dc.date.issued | 2025 | |
| dc.description | Nijkamp, Peter/0000-0002-4068-8132 | en_US |
| dc.description.abstract | The Airbnb sector has experienced exponential growth over the past decade and has led to extensive research in fields such as hospitality sciences, urban geography, tourism economics, and information management. This paper contributes to quantitative research in the Airbnb sector by focusing on the integration of digital platform data at the neighborhood level. It explores innovative methodologies for analyzing urban attractiveness by combining insights from hedonic pricing models with large-scale digital data sourced through AI-based approaches. This novel framework compares user-based valuations of accommodations derived from hedonic pricing with subjective, AI-generated neighborhood descriptions, offering new perspectives on data quality and reliability in information systems. The study also critically examines the challenges of integrating AI-generated content in information science, referencing also 'Garbage-in Garbage-out' and 'Bullshit-in Bullshit-out' concepts. Employing a multi-scalar modeling approach, the research examines Airbnb pricing dynamics across several U.S. cities, starting with Manhattan (USA) as an illustrative case. A subsequent large-scale application to additional metropolitan areas utilizes a combination of hedonic price modeling, social media data, and AI-generated urban descriptions, including a Shapley decomposition analysis. This interdisciplinary integration provides actionable insights into neighborhood attractiveness and pricing mechanisms, while highlighting methodological and empirical contributions to the broader field of information management. By employing the relationship between AI-driven textual data and quantitative modeling, this research provides added value in analyzing urban information systems and their application to digital platforms. | en_US |
| dc.description.sponsorship | SAGES project [CF 20/27.07.2023]; National Recovery and Resilience Plan for Romania [PNRR-III-C9-2023-18/Comp9/Inv8]; EU NextGeneration programme; Horizon Europe Widening project UR-DATA [101059994]; Horizon Europe Widening project [10113683]; Big Data technology enabled sustainable and social just cities' [124N068]; CITY FOCUS project [CF23/27.07.2023]; Horizon Europe - Horizontal Pillar [101059994] Funding Source: Horizon Europe - Horizontal Pillar | en_US |
| dc.description.sponsorship | Peter Nijkamp acknowledges support from the SAGES project (CF 20/27.07.2023) facilitated by the National Recovery and Resilience Plan for Romania (PNRR-III-C9-2023-18/Comp9/Inv8) and supported by the EU NextGeneration programme. John O <spacing diaeresis> sth acknowledges support from the Horizon Europe Widening project UR-DATA with grant number 101059994 and the Horizon Europe Widening project Cross-Reis under grant agreement 10113683. Umut Tuerk and John O <spacing diaeresis> sth acknowledge support from the project 'the Big Data technology enabled sustainable and social just cities' (Tuebitak 1071, 124N068) and support from the project "Silver Ways: Integrating a Walkable Routing System with a 15-Minute Neighborhood Index to Enhance Mobility for Older People (Tuebitak 1071,22N052) and Umut Tuerk also acknowledges support from the CITY FOCUS project (CF23/27.07.2023) facilitated by the National Recovery and Resilience Plan for Romania (PNRR-III-C9-2023-18/Comp9/Inv8) and supported by the EU NextGeneration programme. | en_US |
| dc.identifier.doi | 10.1016/j.compenvurbsys.2025.102303 | |
| dc.identifier.issn | 0198-9715 | |
| dc.identifier.issn | 1873-7587 | |
| dc.identifier.scopus | 2-s2.0-105003817233 | |
| dc.identifier.uri | https://doi.org/10.1016/j.compenvurbsys.2025.102303 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/3924 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier Sci Ltd | en_US |
| dc.relation.ispartof | Computers Environment and Urban Systems | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Hedonic Pricing | en_US |
| dc.subject | Social Media Data | en_US |
| dc.subject | Ai In Information Management | en_US |
| dc.subject | Airbnb | en_US |
| dc.subject | Urban Data Systems | en_US |
| dc.subject | Multi-Scalar Modeling | en_US |
| dc.subject | Data Quality | en_US |
| dc.subject | Garbage-In Garbage-Out | en_US |
| dc.subject | Ai-Generated Content | en_US |
| dc.title | Hedonic Price Models, Social Media Data and AI - An Application to the AirBNB Sector in US Cities | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Nijkamp, Peter/0000-0002-4068-8132 | |
| gdc.author.scopusid | 35788446500 | |
| gdc.author.scopusid | 57205739936 | |
| gdc.author.scopusid | 25930439500 | |
| gdc.author.scopusid | 7102958684 | |
| gdc.author.wosid | Türk, Umut/Aae-9223-2021 | |
| gdc.author.wosid | Karima, Karima/Aah-3200-2019 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Osth, John] Oslo Metropolitan Univ, Oslo, Norway; [Osth, John] Uppsala Univ, Uppsala, Sweden; [Turk, Umut] Abdullah Gul Univ, Kayseri, Turkiye; [Kourtit, Karima] Open Univ, Heerlen, Netherlands; [Turk, Umut; Kourtit, Karima] Alexandru Ioan Cuza Univ, Iasi, Romania; [Nijkamp, Peter] Rijeka Univ, Rijeka, Croatia | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 102303 | |
| gdc.description.volume | 120 | en_US |
| gdc.description.woscitationindex | Social Science Citation Index | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W4410017087 | |
| gdc.identifier.wos | WOS:001494494600001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | HYBRID | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 3.0 | |
| gdc.oaire.influence | 3.1759313E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Garbage-in garbage-out | |
| gdc.oaire.keywords | Social media data | |
| gdc.oaire.keywords | Urban data systems | |
| gdc.oaire.keywords | Data quality | |
| gdc.oaire.keywords | AI in information management | |
| gdc.oaire.keywords | Hedonic pricing | |
| gdc.oaire.keywords | AI-generated content | |
| gdc.oaire.keywords | Airbnb | |
| gdc.oaire.keywords | Multi-scalar modeling | |
| gdc.oaire.popularity | 5.25095E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.fwci | 32.66635354 | |
| gdc.openalex.normalizedpercentile | 0.98 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.crossrefcites | 2 | |
| gdc.plumx.mendeley | 38 | |
| gdc.plumx.newscount | 1 | |
| gdc.plumx.scopuscites | 2 | |
| gdc.scopus.citedcount | 4 | |
| gdc.virtual.author | Türk, Umut | |
| gdc.wos.citedcount | 3 | |
| relation.isAuthorOfPublication | 6ed2580f-230a-4345-a7ac-6355206b4501 | |
| relation.isAuthorOfPublication.latestForDiscovery | 6ed2580f-230a-4345-a7ac-6355206b4501 | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication | 0acb04bc-dc44-4d23-bf19-b42148204f24 | |
| relation.isOrgUnitOfPublication | f2803143-783c-4edc-859a-7a1421d6d5c6 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
