A Transfer Learning Application on the Reliability of Psychological Drugs' Comments

dc.contributor.author Sen, Tarik Uveys
dc.contributor.author Bakal, Gokhan
dc.date.accessioned 2025-09-25T10:39:45Z
dc.date.available 2025-09-25T10:39:45Z
dc.date.issued 2023
dc.description Aselsan; CIS ARGE; Yeditepe University en_US
dc.description.abstract As digitalization and the Internet stay emerging concepts by gaining popularity, the accuracy of personal reviews/opinions will be a critical issue. This circumstance also particularly applies to patients taking psychological drugs, where accurate information is crucial for other patients and medical professionals. In this study, we analyze drug reviews from drugs.com to determine the effectiveness of reviews for psychological drugs. Our dataset includes over 200,000 drug reviews, which we labeled as positive, negative, or neutral according to their rating scores. We apply machine learning (ML) models, including Logistic Regression, Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) algorithms, to predict the sentiment class of each review. Our results demonstrate an F1-Weighted score of 85.3% for the LSTM model. However, by applying the transfer learning technique, we further improved the F1 score (nearly 3% increase) obtained by the LSTM model. Our findings proved that there is no contextual difference between the comments made by the patients suffering from psychological or other diseases. © 2023 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1109/SmartNets58706.2023.10215681
dc.identifier.isbn 9798350302523
dc.identifier.scopus 2-s2.0-85170644732
dc.identifier.uri https://doi.org/10.1109/SmartNets58706.2023.10215681
dc.identifier.uri https://hdl.handle.net/20.500.12573/3170
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof -- 2023 International Conference on Smart Applications, Communications and Networking, SmartNets 2023 -- Istanbul -- 191902 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Deep Learning en_US
dc.subject Machine Learning en_US
dc.subject Natural Language Processing en_US
dc.subject Transfer Learning en_US
dc.subject Learning Algorithms en_US
dc.subject Learning Systems en_US
dc.subject Logistic Regression en_US
dc.subject Natural Language Processing Systems en_US
dc.subject Transfer Learning en_US
dc.subject Critical Issues en_US
dc.subject Deep Learning en_US
dc.subject Language Processing en_US
dc.subject Machine-Learning en_US
dc.subject Medical Professionals en_US
dc.subject Memory Modeling en_US
dc.subject Natural Language Processing en_US
dc.subject Natural Languages en_US
dc.subject Positive/Negative en_US
dc.subject Long Short-Term Memory en_US
dc.title A Transfer Learning Application on the Reliability of Psychological Drugs' Comments en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 58572643100
gdc.author.scopusid 57074041500
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Sen] Tarik Uveys, Department of Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Bakal] Gokhan, Department of Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey en_US
gdc.description.endpage 6
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.wosquality N/A
gdc.identifier.openalex W4386072137
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.619421E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.9332128E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 1.02177155
gdc.openalex.normalizedpercentile 0.76
gdc.opencitations.count 3
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.virtual.author Bakal, Mehmet Gökhan
relation.isAuthorOfPublication 53ed538c-20d9-45c8-af59-7fa4d1b90cf7
relation.isAuthorOfPublication.latestForDiscovery 53ed538c-20d9-45c8-af59-7fa4d1b90cf7
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files