Multiple Positive Solutions of Nonlinear M-Point Dynamic Equations for P-Laplacian on Time Scales

dc.contributor.author Dogan, Abdulkadir
dc.date.accessioned 2025-09-25T10:51:14Z
dc.date.available 2025-09-25T10:51:14Z
dc.date.issued 2016
dc.description.abstract In this paper, we study the existence of positive solutions of a nonlinear m-point p-Laplacian dynamic equation (phi(p) (x(Delta)(t)))(del) w(t)f (t,x(t), x(Delta)(t)) = 0, t(1) < m-1 X(ti) - B-0 (Sigma m-1 i=2 a(i)x(Delta)(t(i))) = 0, x(Delta) (tm) = 0, or x(Delta)(t(1)) - 0, x(t(m)) + B-1(Sigma m-1 i=2 b(i)s(Delta)(t(i))) -0, where phi(p)(s) =vertical bar s vertical bar(P-2) s, p > 1. Sufficient conditions for the existence of at least three positive solutions of the problem are obtained by using a fixed point theorem. The interesting point is the nonlinear term f is involved with the first order derivative explicitly. As an application, an example is given to illustrate the result. en_US
dc.identifier.doi 10.3906/mat-1503-23
dc.identifier.issn 1300-0098
dc.identifier.issn 1303-6149
dc.identifier.scopus 2-s2.0-85007153930
dc.identifier.uri https://doi.org/10.3906/mat-1503-23
dc.identifier.uri https://hdl.handle.net/20.500.12573/4246
dc.language.iso en en_US
dc.publisher Tubitak Scientific & Technological Research Council Turkey en_US
dc.relation.ispartof Turkish Journal of Mathematics en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Time Scales en_US
dc.subject Boundary Value Problem en_US
dc.subject P-Laplacian en_US
dc.subject Positive Solutions en_US
dc.subject Fixed Point Theorem en_US
dc.title Multiple Positive Solutions of Nonlinear M-Point Dynamic Equations for P-Laplacian on Time Scales en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Dogan, Abdulkadir
gdc.author.scopusid 7101805539
gdc.author.wosid Doğan, Abdülkadir/A-9812-2013
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Dogan, Abdulkadir] Abdullah Gul Univ, Fac Comp Sci, Dept Appl Math, Kayseri, Turkey en_US
gdc.description.endpage 959 en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 941 en_US
gdc.description.volume 40 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W2539003758
gdc.identifier.wos WOS:000386115600002
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.downloads 87
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen true
gdc.oaire.keywords positive solutions
gdc.oaire.keywords boundary value problem
gdc.oaire.keywords p-Laplacian
gdc.oaire.keywords fixed point theorem
gdc.oaire.keywords Time scales
gdc.oaire.keywords Nonlinear boundary value problems for ordinary differential equations
gdc.oaire.keywords Applications of operator theory to differential and integral equations
gdc.oaire.keywords Singular nonlinear boundary value problems for ordinary differential equations
gdc.oaire.keywords time scales
gdc.oaire.keywords Positive solutions to nonlinear boundary value problems for ordinary differential equations
gdc.oaire.keywords \(p\)-Laplacian
gdc.oaire.keywords Dynamic equations on time scales or measure chains
gdc.oaire.keywords Nonlocal and multipoint boundary value problems for ordinary differential equations
gdc.oaire.popularity 8.106198E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.views 172
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.13
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Doğan, Abdülkadir
gdc.wos.citedcount 0
relation.isAuthorOfPublication f79a54b3-64ad-46e8-adfc-228e8ca25a07
relation.isAuthorOfPublication.latestForDiscovery f79a54b3-64ad-46e8-adfc-228e8ca25a07
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 26c938e5-738e-41bf-8231-8de593870236
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files