Cyber Threats to Green Hydrogen Production Within a Solar Microgrid

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Springer International Publishing AG

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

The transition towards sustainable energy systems depends heavily on the reliable operation of renewable energy infrastructure, which is increasingly interconnected and digitized. Therefore, ensuring cybersecurity resilience is essential for maintaining the reliability and safety of renewable energy systems in a rapidly evolving digital landscape. This paper investigates the economic implications of data integrity and system configuration attacks on a green hydrogen production system within a solar microgrid. Through a comprehensive analysis, the vulnerability of the system to cyber intrusions that manipulate relay settings, electricity prices, and hydrogen level, is examined. Drawing on a multidisciplinary framework encompassing energy economics, cybersecurity, and renewable energy technologies, a methodological approach is developed to quantify the direct economic impacts of attacks. Simulation results indicate that such attacks can decrease profits by up to 14%.

Description

Keywords

Cybersecurity, Green Hydrogen, Solar Microgrid

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

N/A

Scopus Q

Q3
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

17th International Conference on Innovative Security Solutions for Information Technology and Communications-SecITC -- Nov 21-22, 2024 -- Bucharest, Romania

Volume

15595

Issue

Start Page

84

End Page

95
PlumX Metrics
Citations

Scopus : 0

Captures

Mendeley Readers : 2

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals