Fast Computation of Katz Index for Efficient Processing of Link Prediction Queries

dc.contributor.author Coskun, Mustafa
dc.contributor.author Baggag, Abdelkader
dc.contributor.author Koyuturk, Mehmet
dc.date.accessioned 2025-09-25T10:47:24Z
dc.date.available 2025-09-25T10:47:24Z
dc.date.issued 2021
dc.description Coskun, Mustafa/0000-0003-4805-1416 en_US
dc.description.abstract Network proximity computations are among the most common operations in various data mining applications, including link prediction and collaborative filtering. A common measure of network proximity is Katz index, which has been shown to be among the best-performing path-based link prediction algorithms. With the emergence of very large network databases, such proximity computations become an important part of query processing in these databases. Consequently, significant effort has been devoted to developing algorithms for efficient computation of Katz index between a given pair of nodes or between a query node and every other node in the network. Here, we present LRC-Katz, an algorithm based on indexing and low rank correction to accelerate Katz index based network proximity queries. Using a variety of very large real-world networks, we show that LRC-Katzoutperforms the fastest existing method, Conjugate Gradient, for a wide range of parameter values. Taking advantage of the acceleration in the computation of Katz index, we propose a new link prediction algorithm that exploits locality of networks that are encountered in practical applications. Our experiments show that the resulting link prediction algorithm drastically outperforms state-of-the-art link prediction methods based on the vanilla and truncated Katz. en_US
dc.identifier.doi 10.1007/s10618-021-00754-8
dc.identifier.issn 1384-5810
dc.identifier.issn 1573-756X
dc.identifier.scopus 2-s2.0-85104843385
dc.identifier.uri https://doi.org/10.1007/s10618-021-00754-8
dc.identifier.uri https://hdl.handle.net/20.500.12573/3860
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Data Mining and Knowledge Discovery en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fast Katz Method en_US
dc.subject Link Prediction en_US
dc.subject Network Proximity en_US
dc.title Fast Computation of Katz Index for Efficient Processing of Link Prediction Queries en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Coskun, Mustafa/0000-0003-4805-1416
gdc.author.scopusid 57189031203
gdc.author.scopusid 6505687292
gdc.author.scopusid 8897820600
gdc.author.wosid Coskun, Mustafa/Kod-5642-2024
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Coskun, Mustafa] Abdullah Gul Univ, Dept Comp Engn, Kayseri, Turkey; [Coskun, Mustafa] Hakkari Univ, Hakkari, Turkey; [Baggag, Abdelkader] Hamad Bin Khalifa Univ, Qatar Comp Res Inst, Doha, Qatar; [Koyuturk, Mehmet] Case Western Reserve Univ, Dept Comp & Data Sci, Cleveland, OH 44106 USA en_US
gdc.description.endpage 1368 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 1342 en_US
gdc.description.volume 35 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W2996031254
gdc.identifier.wos WOS:000640742500001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype BRONZE
gdc.oaire.diamondjournal false
gdc.oaire.downloads 53
gdc.oaire.impulse 4.0
gdc.oaire.influence 2.8262022E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Social and Information Networks (cs.SI)
gdc.oaire.keywords FOS: Computer and information sciences
gdc.oaire.keywords Computer Science - Machine Learning
gdc.oaire.keywords Link prediction
gdc.oaire.keywords Network proximity
gdc.oaire.keywords Computer Science - Social and Information Networks
gdc.oaire.keywords Fast Katz method
gdc.oaire.keywords Machine Learning (cs.LG)
gdc.oaire.keywords Database theory
gdc.oaire.keywords fast Katz method
gdc.oaire.keywords Graphical indices (Wiener index, Zagreb index, Randić index, etc.)
gdc.oaire.keywords Graph algorithms (graph-theoretic aspects)
gdc.oaire.keywords Graph theory (including graph drawing) in computer science
gdc.oaire.keywords Analysis of algorithms
gdc.oaire.keywords network proximity
gdc.oaire.keywords link prediction
gdc.oaire.popularity 5.4763865E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.views 98
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.01
gdc.opencitations.count 3
gdc.plumx.mendeley 14
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
gdc.wos.citedcount 4
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files