Fast Computation of Katz Index for Efficient Processing of Link Prediction Queries
| dc.contributor.author | Coskun, Mustafa | |
| dc.contributor.author | Baggag, Abdelkader | |
| dc.contributor.author | Koyuturk, Mehmet | |
| dc.date.accessioned | 2025-09-25T10:47:24Z | |
| dc.date.available | 2025-09-25T10:47:24Z | |
| dc.date.issued | 2021 | |
| dc.description | Coskun, Mustafa/0000-0003-4805-1416 | en_US |
| dc.description.abstract | Network proximity computations are among the most common operations in various data mining applications, including link prediction and collaborative filtering. A common measure of network proximity is Katz index, which has been shown to be among the best-performing path-based link prediction algorithms. With the emergence of very large network databases, such proximity computations become an important part of query processing in these databases. Consequently, significant effort has been devoted to developing algorithms for efficient computation of Katz index between a given pair of nodes or between a query node and every other node in the network. Here, we present LRC-Katz, an algorithm based on indexing and low rank correction to accelerate Katz index based network proximity queries. Using a variety of very large real-world networks, we show that LRC-Katzoutperforms the fastest existing method, Conjugate Gradient, for a wide range of parameter values. Taking advantage of the acceleration in the computation of Katz index, we propose a new link prediction algorithm that exploits locality of networks that are encountered in practical applications. Our experiments show that the resulting link prediction algorithm drastically outperforms state-of-the-art link prediction methods based on the vanilla and truncated Katz. | en_US |
| dc.identifier.doi | 10.1007/s10618-021-00754-8 | |
| dc.identifier.issn | 1384-5810 | |
| dc.identifier.issn | 1573-756X | |
| dc.identifier.scopus | 2-s2.0-85104843385 | |
| dc.identifier.uri | https://doi.org/10.1007/s10618-021-00754-8 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/3860 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.relation.ispartof | Data Mining and Knowledge Discovery | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Fast Katz Method | en_US |
| dc.subject | Link Prediction | en_US |
| dc.subject | Network Proximity | en_US |
| dc.title | Fast Computation of Katz Index for Efficient Processing of Link Prediction Queries | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Coskun, Mustafa/0000-0003-4805-1416 | |
| gdc.author.scopusid | 57189031203 | |
| gdc.author.scopusid | 6505687292 | |
| gdc.author.scopusid | 8897820600 | |
| gdc.author.wosid | Coskun, Mustafa/Kod-5642-2024 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Coskun, Mustafa] Abdullah Gul Univ, Dept Comp Engn, Kayseri, Turkey; [Coskun, Mustafa] Hakkari Univ, Hakkari, Turkey; [Baggag, Abdelkader] Hamad Bin Khalifa Univ, Qatar Comp Res Inst, Doha, Qatar; [Koyuturk, Mehmet] Case Western Reserve Univ, Dept Comp & Data Sci, Cleveland, OH 44106 USA | en_US |
| gdc.description.endpage | 1368 | en_US |
| gdc.description.issue | 4 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 1342 | en_US |
| gdc.description.volume | 35 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W2996031254 | |
| gdc.identifier.wos | WOS:000640742500001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | BRONZE | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.downloads | 53 | |
| gdc.oaire.impulse | 4.0 | |
| gdc.oaire.influence | 2.8262022E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Social and Information Networks (cs.SI) | |
| gdc.oaire.keywords | FOS: Computer and information sciences | |
| gdc.oaire.keywords | Computer Science - Machine Learning | |
| gdc.oaire.keywords | Link prediction | |
| gdc.oaire.keywords | Network proximity | |
| gdc.oaire.keywords | Computer Science - Social and Information Networks | |
| gdc.oaire.keywords | Fast Katz method | |
| gdc.oaire.keywords | Machine Learning (cs.LG) | |
| gdc.oaire.keywords | Database theory | |
| gdc.oaire.keywords | fast Katz method | |
| gdc.oaire.keywords | Graphical indices (Wiener index, Zagreb index, Randić index, etc.) | |
| gdc.oaire.keywords | Graph algorithms (graph-theoretic aspects) | |
| gdc.oaire.keywords | Graph theory (including graph drawing) in computer science | |
| gdc.oaire.keywords | Analysis of algorithms | |
| gdc.oaire.keywords | network proximity | |
| gdc.oaire.keywords | link prediction | |
| gdc.oaire.popularity | 5.4763865E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.views | 98 | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.01 | |
| gdc.opencitations.count | 3 | |
| gdc.plumx.mendeley | 14 | |
| gdc.plumx.scopuscites | 6 | |
| gdc.scopus.citedcount | 6 | |
| gdc.wos.citedcount | 4 | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
