AMP-GSM: Prediction of Antimicrobial Peptides via a Grouping-Scoring Approach

dc.contributor.author Soylemez, Ummu Gulsum
dc.contributor.author Yousef, Malik
dc.contributor.author Bakir-Gungor, Burcu
dc.date.accessioned 2025-09-25T10:39:49Z
dc.date.available 2025-09-25T10:39:49Z
dc.date.issued 2023
dc.description Soylemez, Ummu Gulsum/0000-0002-6602-772X; Bakir-Gungor, Burcu/0000-0002-2272-6270; Yousef, Malik/0000-0001-8780-6303 en_US
dc.description.abstract Due to the increasing resistance of bacteria to antibiotics, scientists began seeking new solutions against this problem. One of the most promising solutions in this field are antimicrobial peptides (AMP). To identify antimicrobial peptides, and to aid the design and production of novel antimicrobial peptides, there is a growing interest in the development of computational prediction approaches, in parallel with the studies performing wet-lab experiments. The computational approaches aim to understand what controls antimicrobial activity from the perspective of machine learning, and to uncover the biological properties that define antimicrobial activity. Throughout this study, we aim to develop a novel prediction approach that can identify peptides with high antimicrobial activity against selected target bacteria. Along this line, we propose a novel method called AMP-GSM (antimicrobial peptide-grouping-scoring-modeling). AMP-GSM includes three main components: grouping, scoring, and modeling. The grouping component creates sub-datasets via placing the physicochemical, linguistic, sequence, and structure-based features into different groups. The scoring component gives a score for each group according to their ability to distinguish whether it is an antimicrobial peptide or not. As the final part of our method, the model built using the top-ranked groups is evaluated (modeling component). The method was tested for three AMP prediction datasets, and the prediction performance of AMP-GSM was comparatively evaluated with several feature selection methods and several classifiers. When we used 10 features (which are members of the physicochemical group), we obtained the highest area under curve (AUC) value for both the Gram-negative (99%) and Gram-positive (98%) datasets. AMP-GSM investigates the most significant feature groups that improve AMP prediction. A number of physico-chemical features from the AMP-GSM's final selection demonstrate how important these variables are in terms of defining peptide characteristics and how they should be taken into account when creating models to predict peptide activity. en_US
dc.description.sponsorship Zefat Academic College; Abdullah Gul University Support Foundation (AGUV) en_US
dc.description.sponsorship The work of M.Y. has been supported by the Zefat Academic College. The work of B.B.-G. has been supported by the Abdullah Gul University Support Foundation (AGUV). en_US
dc.identifier.doi 10.3390/app13085106
dc.identifier.issn 2076-3417
dc.identifier.scopus 2-s2.0-85156117360
dc.identifier.uri https://doi.org/10.3390/app13085106
dc.identifier.uri https://hdl.handle.net/20.500.12573/3177
dc.language.iso en en_US
dc.publisher MDPI en_US
dc.relation.ispartof Applied Sciences-Basel en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Antimicrobial Peptide (AMP) Prediction en_US
dc.subject Physico-Chemical Properties en_US
dc.subject Grouping en_US
dc.subject Scoring en_US
dc.subject Modeling (GSM) en_US
dc.subject Antibiotic Resistance en_US
dc.subject QSAR en_US
dc.subject Gram-Negative Bacteria en_US
dc.subject Gram-Positive Bacteria en_US
dc.title AMP-GSM: Prediction of Antimicrobial Peptides via a Grouping-Scoring Approach en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Soylemez, Ummu Gulsum/0000-0002-6602-772X
gdc.author.id Bakir-Gungor, Burcu/0000-0002-2272-6270
gdc.author.id Yousef, Malik/0000-0001-8780-6303
gdc.author.scopusid 57576344400
gdc.author.scopusid 14029389000
gdc.author.scopusid 25932029800
gdc.author.wosid Gulsum, Ummu/Juv-2983-2023
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Soylemez, Ummu Gulsum] Mus Alparslan Univ, Fac Engn, Dept Software Engn, TR-49100 Mus, Turkiye; [Soylemez, Ummu Gulsum; Bakir-Gungor, Burcu] Abdullah Gul Univ, Fac Engn, Dept Comp Engn, TR-38170 Kayseri, Turkiye; [Yousef, Malik] Zefat Acad Coll, Dept Informat Syst, IL-13206 Safed, Israel en_US
gdc.description.issue 8 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 5106
gdc.description.volume 13 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4366590215
gdc.identifier.wos WOS:000979120100001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.downloads 133
gdc.oaire.impulse 10.0
gdc.oaire.influence 2.7762692E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Resource
gdc.oaire.keywords Technology
gdc.oaire.keywords modeling (GSM)
gdc.oaire.keywords antibiotic resistance
gdc.oaire.keywords Qsar
gdc.oaire.keywords QH301-705.5
gdc.oaire.keywords QC1-999
gdc.oaire.keywords Physico-Chemical Properties
gdc.oaire.keywords Gram-Positive Bacteria
gdc.oaire.keywords physico-chemical properties
gdc.oaire.keywords Feature-Selection
gdc.oaire.keywords Database
gdc.oaire.keywords grouping
gdc.oaire.keywords Information
gdc.oaire.keywords Gram-Negative Bacteria
gdc.oaire.keywords Grouping
gdc.oaire.keywords Biology (General)
gdc.oaire.keywords QD1-999
gdc.oaire.keywords QSAR
gdc.oaire.keywords Modeling (Gsm)
gdc.oaire.keywords T
gdc.oaire.keywords Physics
gdc.oaire.keywords scoring
gdc.oaire.keywords Gram-positive bacteria
gdc.oaire.keywords Engineering (General). Civil engineering (General)
gdc.oaire.keywords antimicrobial peptide (AMP) prediction
gdc.oaire.keywords Chemistry
gdc.oaire.keywords Antibiotic Resistance
gdc.oaire.keywords Gram-negative bacteria
gdc.oaire.keywords antimicrobial peptide (AMP) prediction; physico-chemical properties; grouping; scoring; modeling (GSM); antibiotic resistance; QSAR; Gram-negative bacteria; Gram-positive bacteria
gdc.oaire.keywords Antimicrobial Peptide (Amp) Prediction
gdc.oaire.keywords TA1-2040
gdc.oaire.keywords Scoring
gdc.oaire.popularity 9.664867E-9
gdc.oaire.publicfunded false
gdc.oaire.views 148
gdc.openalex.collaboration International
gdc.openalex.fwci 3.78201421
gdc.openalex.normalizedpercentile 0.9
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 9
gdc.plumx.crossrefcites 7
gdc.plumx.mendeley 8
gdc.plumx.newscount 1
gdc.plumx.scopuscites 12
gdc.scopus.citedcount 12
gdc.virtual.author Güngör, Burcu
gdc.wos.citedcount 9
relation.isAuthorOfPublication e17be1f8-1c9a-45f2-bf0d-f8b348d2dba0
relation.isAuthorOfPublication.latestForDiscovery e17be1f8-1c9a-45f2-bf0d-f8b348d2dba0
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files