Integrative Analyses in Omics Data: Machine Learning Perspective

dc.contributor.author Ünlü Yazici, Miray
dc.contributor.author Bakir-Güngör, Burcu
dc.contributor.author Yousef, Malik
dc.date.accessioned 2025-09-25T10:37:25Z
dc.date.available 2025-09-25T10:37:25Z
dc.date.issued 2023
dc.description.abstract Developments in the high throughput technologies have enabled the production of an immense amount of knowledge at the multi-omics level. Considering complex diseases which are affected by multi-factors, single omics datasets might not be sufficient to unveil the molecular mechanisms of heterogeneous diseases. Providing a comprehensive and systematic overview to explain disease hallmarks in significant depth is critical. Utilizing multi-omics datasets has led to the development of a variety of tools and platforms. Machine learning models are utilized in a wide variety of tools to tackle the complexity of disorders and to identify new biomolecular signatures and potential markers. Underlying aspects of these approaches are based on training the models for making predictions and classification of the given data. In this review, we describe current machine learning-based approaches and available implementations. Challenges in the enlightenment of disease mechanisms of onset and progression and future development of the field of medicine will be discussed. The prominence of biological interpretation of model output with corresponding biological knowledge will be also covered in this review. © 2023 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.3205/mibe000244
dc.identifier.issn 1860-9171
dc.identifier.issn 1860-8779
dc.identifier.scopus 2-s2.0-85173588449
dc.identifier.uri https://doi.org/10.3205/mibe000244
dc.identifier.uri https://hdl.handle.net/20.500.12573/2961
dc.language.iso en en_US
dc.publisher Deutsche Gesellschaft fur Medizinische Informatik, Biometrie und Epidemiologie e.V. en_US
dc.relation.ispartof Deutsche Gesellschaft fur Medizinische Informatik, Biometrie und Epidemiologie e.V. (GMDS) -- 68. Jahrestagung der Deutsche Gesellschaft fur Medizinische Informatik, Biometrie und Epidemiologie e.V., GMDS 2023 - 68th Annual Conference of the German Association for Medical Informatics, Biometry and Epidemiology, GMDS 2023 -- Heilbronn -- 191783 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Throughput en_US
dc.subject 'Omics' en_US
dc.subject Bio-Molecular en_US
dc.subject Complex Disease en_US
dc.subject Heterogeneous Disease en_US
dc.subject High Throughput Technology en_US
dc.subject Integrative Analysis en_US
dc.subject Machine Learning Models en_US
dc.subject Machine-Learning en_US
dc.subject Molecular Mechanism en_US
dc.subject Multi-Factor en_US
dc.subject Machine Learning en_US
dc.title Integrative Analyses in Omics Data: Machine Learning Perspective en_US
dc.title.alternative Integrative Analysen von Omics-Daten: Perspektive des Maschinellen Lernens en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 56305651300
gdc.author.scopusid 25932029800
gdc.author.scopusid 14029389000
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Ünlü Yazici] Miray, Department of Bioengineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Bakir-Güngör] Burcu, Department of Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Yousef] Malik, Department of Information Systems, Zefat Academic College, Safad, Israel, Zefat Academic College, Safad, Israel en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.volume 19 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W6946325290
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.48
gdc.opencitations.count 0
gdc.plumx.mendeley 1
gdc.plumx.newscount 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Ünlü Yazıcı, Miray
gdc.virtual.author Güngör, Burcu
relation.isAuthorOfPublication f15e1618-0966-48fc-9bc4-fb3a69f5f28c
relation.isAuthorOfPublication e17be1f8-1c9a-45f2-bf0d-f8b348d2dba0
relation.isAuthorOfPublication.latestForDiscovery f15e1618-0966-48fc-9bc4-fb3a69f5f28c
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication 4eea69bf-e8aa-4e3e-ab18-7587ac1d841b
relation.isOrgUnitOfPublication 5519c95e-5bcb-45e5-8ce1-a8b4bcf7c7b9
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files