Probabilistic Assessment of Wind Power Plant Energy Potential Through a Copula-Deep Learning Approach in Decision Trees

dc.contributor.author Sahin, Kubra Nur
dc.contributor.author Sutcu, Muhammed
dc.date.accessioned 2025-09-25T10:55:33Z
dc.date.available 2025-09-25T10:55:33Z
dc.date.issued 2024
dc.description Sutcu, Muhammed/0000-0002-8523-9103; Sahin, Kubra Nur/0000-0001-9786-6270 en_US
dc.description.abstract In the face of environmental degradation and diminished energy resources, there is an urgent need for clean, affordable, and sustainable energy solutions, which highlights the importance of wind energy. In the global transition to renewable energy sources, wind power has emerged as a key player that is in line with the Paris Agreement, the Net Zero Target by 2050, and the UN 2030 Goals, especially SDG-7. It is critical to consider the variable and intermittent nature of wind to efficiently harness wind energy and evaluate its potential. Nonetheless, since wind energy is inherently variable and intermittent, a comprehensive assessment of a prospective site's wind power generation potential is required. This analysis is crucial for stakeholders and policymakers to make well-informed decisions because it helps them assess financial risks and choose the best locations for wind power plant installations. In this study, we introduce a framework based on Copula-Deep Learning within the context of decision trees. The main objective is to enhance the assessment of the wind power potential of a site by exploiting the intricate and non-linear dependencies among meteorological variables through the fusion of copulas and deep learning techniques. An empirical study was carried out using wind power plant data from Turkey. This dataset includes hourly power output measurements as well as comprehensive meteorological data for 2021. The results show that acknowledging and addressing the non-independence of variables through innovative frameworks like the Copula-LSTM based decision tree approach can significantly improve the accuracy and reliability of wind power plant potential assessment and analysis in other real-world data scenarios. The implications of this research extend beyond wind energy to inform decision-making processes critical for a sustainable energy future. en_US
dc.description.sponsorship TUBITAK National Scholarship Program [BIDEB 2211-A]; Gulf University for Science and Technology en_US
dc.description.sponsorship This study was supported by TUBITAK BIDEB 2211-A National Scholarship Program for Ph.D. students. Also, the APC was funded by the Gulf University for Science and Technology. en_US
dc.identifier.doi 10.1016/j.heliyon.2024.e28270
dc.identifier.issn 2405-8440
dc.identifier.scopus 2-s2.0-85189100922
dc.identifier.uri https://doi.org/10.1016/j.heliyon.2024.e28270
dc.identifier.uri https://hdl.handle.net/20.500.12573/4477
dc.language.iso en en_US
dc.publisher Cell Press en_US
dc.relation.ispartof Heliyon en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Sustainable Energy en_US
dc.subject Decision Models en_US
dc.subject Information Theory en_US
dc.subject Copulas en_US
dc.subject Deep Learning en_US
dc.title Probabilistic Assessment of Wind Power Plant Energy Potential Through a Copula-Deep Learning Approach in Decision Trees en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Sutcu, Muhammed/0000-0002-8523-9103
gdc.author.id Sahin, Kubra Nur/0000-0001-9786-6270
gdc.author.scopusid 58963871100
gdc.author.scopusid 57203285174
gdc.author.wosid Sahin, Kubra/Koc-2289-2024
gdc.author.wosid Sutcu, Muhammed/Gwd-1150-2022
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Sahin, Kubra Nur] Abdullah Gul Univ, Fac Engn, Ind Engn Dept, Kayseri, Turkiye; [Sutcu, Muhammed] Gulf Univ Sci & Technol, Coll Engn & Architecture, Engn Management Dept, Mishref, Kuwait en_US
gdc.description.issue 7 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage e28270
gdc.description.volume 10 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4393236680
gdc.identifier.pmid 38586341
gdc.identifier.wos WOS:001226053600001
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 4.0
gdc.oaire.influence 2.772739E-9
gdc.oaire.isgreen true
gdc.oaire.keywords H1-99
gdc.oaire.keywords Information theory
gdc.oaire.keywords Science (General)
gdc.oaire.keywords Sustainable energy
gdc.oaire.keywords Deep learning
gdc.oaire.keywords Social sciences (General)
gdc.oaire.keywords Q1-390
gdc.oaire.keywords Decision models
gdc.oaire.keywords Copulas
gdc.oaire.keywords Research Article
gdc.oaire.popularity 5.496804E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.openalex.collaboration International
gdc.openalex.fwci 1.84584236
gdc.openalex.normalizedpercentile 0.78
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 0
gdc.plumx.crossrefcites 4
gdc.plumx.mendeley 26
gdc.plumx.newscount 1
gdc.plumx.pubmedcites 1
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
gdc.virtual.author Şahin, Kübra Nur
gdc.virtual.author Sütçü, Muhammed
gdc.wos.citedcount 2
relation.isAuthorOfPublication bf5bfe5d-eced-46ed-949d-f76af472b4a7
relation.isAuthorOfPublication 346bb5cc-f5cb-4f40-bd6f-995436a96d63
relation.isAuthorOfPublication.latestForDiscovery bf5bfe5d-eced-46ed-949d-f76af472b4a7
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 02408e76-5684-4dd8-94c0-04f99d5fd588
relation.isOrgUnitOfPublication 41a7d786-5b6d-4171-908b-e188c2ec347c
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files