PRNU Estimation From Encoded Videos Using Block-Based Weighting
| dc.contributor.author | Altinişik, Enes | |
| dc.contributor.author | Taşdemir, Kasím | |
| dc.contributor.author | Sencar, Hüsrev Taha | |
| dc.date.accessioned | 2025-09-25T10:54:24Z | |
| dc.date.available | 2025-09-25T10:54:24Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | Estimating the photo-response non-uniformity (PRNU) of an imaging sensor from videos is a challenging task due to complications created by several processing steps in the camera imaging pipeline. Among these steps, video coding is one of the most disruptive to PRNU estimation because of its lossy nature. Since videos are always stored in a compressed format, the ability to cope with the disruptive effects of encoding is central to reliable attribution. In this work, by focusing on the block-based operation of widely used video coding standards, we present an improved approach to PRNU estimation that exploits this behavior. To this purpose, several PRNU weighting schemes that utilize block-level parameters, such as encoding block type, quantization strength, and rate-distortion value, are proposed and compared. Our results show that the use of the coding rate of a block serves as a better estimator for the strength of PRNU with almost three times improvement in the matching statistic at low to medium coding bitrates as compared to the basic estimation method developed for photos. © 2021 Elsevier B.V., All rights reserved. | en_US |
| dc.identifier.doi | 10.2352/ISSN.2470-1173.2021.4.MWSF-338 | |
| dc.identifier.issn | 2470-1173 | |
| dc.identifier.scopus | 2-s2.0-85111461000 | |
| dc.identifier.uri | https://doi.org/10.2352/ISSN.2470-1173.2021.4.MWSF-338 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/4373 | |
| dc.language.iso | en | en_US |
| dc.publisher | Society for Imaging Science and Technology | en_US |
| dc.relation.ispartof | IS and T International Symposium on Electronic Imaging Science and Technology -- 2021 Media Watermarking, Security, and Forensics Conference, MWSF 2021 -- Virtual, Online -- 170234 | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Electric Distortion | en_US |
| dc.subject | Encoding (Symbols) | en_US |
| dc.subject | Image Coding | en_US |
| dc.subject | Image Enhancement | en_US |
| dc.subject | Signal Distortion | en_US |
| dc.subject | Signal Encoding | en_US |
| dc.subject | Disruptive Effects | en_US |
| dc.subject | Estimation Methods | en_US |
| dc.subject | Imaging Pipelines | en_US |
| dc.subject | Matching Statistics | en_US |
| dc.subject | Photo Response Non Uniformities (PRNU) | en_US |
| dc.subject | Processing Steps | en_US |
| dc.subject | Video Coding Standard | en_US |
| dc.subject | Weighting Scheme | en_US |
| dc.subject | Video Signal Processing | en_US |
| dc.title | PRNU Estimation From Encoded Videos Using Block-Based Weighting | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 57205380729 | |
| gdc.author.scopusid | 26538758900 | |
| gdc.author.scopusid | 8616233200 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::conference output | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Altinişik] Enes, Qatar Computing Research Institute, Doha, Qatar; [Taşdemir] Kasím, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Sencar] Hüsrev Taha, Qatar Computing Research Institute, Doha, Qatar | en_US |
| gdc.description.endpage | 1 | |
| gdc.description.issue | 4 | en_US |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q4 | |
| gdc.description.startpage | 338 | |
| gdc.description.volume | 2021 | en_US |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W3057378327 | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.downloads | 43 | |
| gdc.oaire.impulse | 1.0 | |
| gdc.oaire.influence | 2.5701308E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | FOS: Computer and information sciences | |
| gdc.oaire.keywords | Computer Science - Cryptography and Security | |
| gdc.oaire.keywords | Image and Video Processing (eess.IV) | |
| gdc.oaire.keywords | Image coding | |
| gdc.oaire.keywords | Electric distortion | |
| gdc.oaire.keywords | Signal encoding | |
| gdc.oaire.keywords | Electrical Engineering and Systems Science - Image and Video Processing | |
| gdc.oaire.keywords | Encoding (symbols) | |
| gdc.oaire.keywords | Image enhancement | |
| gdc.oaire.keywords | Signal distortion | |
| gdc.oaire.keywords | FOS: Electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.keywords | Cryptography and Security (cs.CR) | |
| gdc.oaire.popularity | 2.377345E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0211 other engineering and technologies | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.views | 121 | |
| gdc.openalex.fwci | 0.10221948 | |
| gdc.openalex.normalizedpercentile | 0.34 | |
| gdc.opencitations.count | 1 | |
| gdc.plumx.mendeley | 2 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.scopus.citedcount | 0 | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
