An Empirical Study of Sentiment Analysis Utilizing Machine Learning and Deep Learning Algorithms
| dc.contributor.author | Erkantarci, Betul | |
| dc.contributor.author | Bakal, Gokhan | |
| dc.date.accessioned | 2025-09-25T10:40:26Z | |
| dc.date.available | 2025-09-25T10:40:26Z | |
| dc.date.issued | 2024 | |
| dc.description | Bakal, Mehmet/0000-0003-2897-3894 | en_US |
| dc.description.abstract | Among text-mining studies, one of the most studied topics is the text classification task applied in various domains, including medicine, social media, and academia. As a sub-problem in text classification, sentiment analysis has been widely investigated to classify often opinion-based textual elements. Specifically, user reviews and experiential feedback for products or services have been employed as fundamental data sources for sentiment analysis efforts. As a result of rapidly emerging technological advancements, social media platforms such as Twitter, Facebook, and Reddit, have become central opinion-sharing mediums since the early 2000s. In this sense, we build various machine-learning models to solve the sentiment analysis problem on the Reddit comments dataset in this work. The experimental models we constructed achieve F1 scores within intervals of 73-76%. Consequently, we present comparative performance scores obtained by traditional machine learning and deep learning models and discuss the results. | en_US |
| dc.identifier.doi | 10.1007/s42001-023-00236-5 | |
| dc.identifier.issn | 2432-2717 | |
| dc.identifier.issn | 2432-2725 | |
| dc.identifier.scopus | 2-s2.0-85178871090 | |
| dc.identifier.uri | https://doi.org/10.1007/s42001-023-00236-5 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/3251 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springernature | en_US |
| dc.relation.ispartof | Journal of Computational Social Science | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Sentiment Analysis | en_US |
| dc.subject | Machine Learning | en_US |
| dc.subject | Deep Learning | en_US |
| dc.subject | Text Mining | en_US |
| dc.title | An Empirical Study of Sentiment Analysis Utilizing Machine Learning and Deep Learning Algorithms | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Bakal, Mehmet/0000-0003-2897-3894 | |
| gdc.author.scopusid | 58750247600 | |
| gdc.author.scopusid | 57074041500 | |
| gdc.author.wosid | Bakal, Mehmet Gokhan/Aat-2797-2020 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Erkantarci, Betul; Bakal, Gokhan] Abdullah Gul Univ, Dept Comp Engn, Erkilet Blvd, TR-38080 Kayseri, Turkiye | en_US |
| gdc.description.endpage | 257 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 241 | en_US |
| gdc.description.volume | 7 | en_US |
| gdc.description.woscitationindex | Emerging Sources Citation Index | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W4389509735 | |
| gdc.identifier.wos | WOS:001117611600001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 13.0 | |
| gdc.oaire.influence | 3.104172E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 1.1917567E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 3.83164331 | |
| gdc.openalex.normalizedpercentile | 0.92 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 6 | |
| gdc.plumx.crossrefcites | 2 | |
| gdc.plumx.mendeley | 21 | |
| gdc.plumx.scopuscites | 9 | |
| gdc.scopus.citedcount | 9 | |
| gdc.virtual.author | Bakal, Mehmet Gökhan | |
| gdc.virtual.author | Erkantarcı, Betül | |
| gdc.wos.citedcount | 13 | |
| relation.isAuthorOfPublication | 53ed538c-20d9-45c8-af59-7fa4d1b90cf7 | |
| relation.isAuthorOfPublication | 81098d59-1894-45fd-92e5-9903b66fc2a8 | |
| relation.isAuthorOfPublication.latestForDiscovery | 53ed538c-20d9-45c8-af59-7fa4d1b90cf7 | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication | 52f507ab-f278-4a1f-824c-44da2a86bd51 | |
| relation.isOrgUnitOfPublication | ef13a800-4c99-4124-81e0-3e25b33c0c2b | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
