An Empirical Study of Sentiment Analysis Utilizing Machine Learning and Deep Learning Algorithms

dc.contributor.author Erkantarci, Betul
dc.contributor.author Bakal, Gokhan
dc.date.accessioned 2025-09-25T10:40:26Z
dc.date.available 2025-09-25T10:40:26Z
dc.date.issued 2024
dc.description Bakal, Mehmet/0000-0003-2897-3894 en_US
dc.description.abstract Among text-mining studies, one of the most studied topics is the text classification task applied in various domains, including medicine, social media, and academia. As a sub-problem in text classification, sentiment analysis has been widely investigated to classify often opinion-based textual elements. Specifically, user reviews and experiential feedback for products or services have been employed as fundamental data sources for sentiment analysis efforts. As a result of rapidly emerging technological advancements, social media platforms such as Twitter, Facebook, and Reddit, have become central opinion-sharing mediums since the early 2000s. In this sense, we build various machine-learning models to solve the sentiment analysis problem on the Reddit comments dataset in this work. The experimental models we constructed achieve F1 scores within intervals of 73-76%. Consequently, we present comparative performance scores obtained by traditional machine learning and deep learning models and discuss the results. en_US
dc.identifier.doi 10.1007/s42001-023-00236-5
dc.identifier.issn 2432-2717
dc.identifier.issn 2432-2725
dc.identifier.scopus 2-s2.0-85178871090
dc.identifier.uri https://doi.org/10.1007/s42001-023-00236-5
dc.identifier.uri https://hdl.handle.net/20.500.12573/3251
dc.language.iso en en_US
dc.publisher Springernature en_US
dc.relation.ispartof Journal of Computational Social Science en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Sentiment Analysis en_US
dc.subject Machine Learning en_US
dc.subject Deep Learning en_US
dc.subject Text Mining en_US
dc.title An Empirical Study of Sentiment Analysis Utilizing Machine Learning and Deep Learning Algorithms en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Bakal, Mehmet/0000-0003-2897-3894
gdc.author.scopusid 58750247600
gdc.author.scopusid 57074041500
gdc.author.wosid Bakal, Mehmet Gokhan/Aat-2797-2020
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Erkantarci, Betul; Bakal, Gokhan] Abdullah Gul Univ, Dept Comp Engn, Erkilet Blvd, TR-38080 Kayseri, Turkiye en_US
gdc.description.endpage 257 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 241 en_US
gdc.description.volume 7 en_US
gdc.description.woscitationindex Emerging Sources Citation Index
gdc.description.wosquality Q2
gdc.identifier.openalex W4389509735
gdc.identifier.wos WOS:001117611600001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 13.0
gdc.oaire.influence 3.104172E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.1917567E-8
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 3.83164331
gdc.openalex.normalizedpercentile 0.92
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 6
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 21
gdc.plumx.scopuscites 9
gdc.scopus.citedcount 9
gdc.virtual.author Bakal, Mehmet Gökhan
gdc.virtual.author Erkantarcı, Betül
gdc.wos.citedcount 13
relation.isAuthorOfPublication 53ed538c-20d9-45c8-af59-7fa4d1b90cf7
relation.isAuthorOfPublication 81098d59-1894-45fd-92e5-9903b66fc2a8
relation.isAuthorOfPublication.latestForDiscovery 53ed538c-20d9-45c8-af59-7fa4d1b90cf7
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files