Protein Β-Sheet Prediction Using an Efficient Dynamic Programming Algorithm

dc.contributor.author Sabzekar, Mostafa
dc.contributor.author Naghibzadeh, Mahmoud
dc.contributor.author Eghdami, Mandie
dc.contributor.author Aydin, Zafer
dc.date.accessioned 2025-09-25T10:55:45Z
dc.date.available 2025-09-25T10:55:45Z
dc.date.issued 2017
dc.description Sabzekar, Mostafa/0000-0002-6886-1240; Naghibzadeh, Mahmoud/0000-0001-5550-5565; Naghibzadeh, Mahmoud/0000-0001-5550-5565 en_US
dc.description.abstract Predicting the beta-sheet structure of a protein is one of the most important intermediate steps towards the identification of its tertiary structure. However, it is regarded as the primary bottleneck due to the presence of non-local interactions between several discontinuous regions in beta-sheets. To achieve reliable long-range interactions, a promising approach is to enumerate and rank all beta-sheet conformations for a given protein and find the one with the highest score. The problem with this solution is that the search space of the problem grows exponentially with respect to the number of beta-strands. Additionally, brute force calculation in this conformational space leads to dealing with a combinatorial explosion problem with intractable computational complexity. The main contribution of this paper is to generate and search the space of the problem efficiently to reduce the time complexity of the problem. To achieve this, two tree structures, called sheet-tree and grouping-tree, are proposed. They model the search space by breaking it into sub-problems. Then, an advanced dynamic programming is proposed that stores the intermediate results, avoids repetitive calculation by repeatedly uses them efficiently in successive steps and reduces the space of the problem by removing those intermediate results that will no longer be required in later steps. As a consequence, the following contributions have been made. Firstly, more accurate beta-sheet structures are found by searching all possible conformations, and secondly, the time complexity of the problem is reduced by searching the space of the problem efficiently which makes the proposed method applicable to predict beta-sheet structures with high number of beta-strands. Experimental results on the BetaSheet916 dataset showed significant improvements of the proposed method in both execution time and the prediction accuracy in comparison with the state-of-the-art beta-sheet structure prediction methods Moreover, we investigate the effect of different contact map predictors on the performance of the proposed method using BetaSheet1452 dataset. The source code is available at http://www.conceptsgate.com/BetaTop.rar. (C) 2017 Elsevier Ltd. All rights reserved. en_US
dc.identifier.doi 10.1016/j.compbiolchem.2017.08.011
dc.identifier.issn 1476-9271
dc.identifier.issn 1476-928X
dc.identifier.scopus 2-s2.0-85028723865
dc.identifier.uri https://doi.org/10.1016/j.compbiolchem.2017.08.011
dc.identifier.uri https://hdl.handle.net/20.500.12573/4498
dc.language.iso en en_US
dc.publisher Elsevier Sci Ltd en_US
dc.relation.ispartof Computational Biology and Chemistry en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Beta-Sheet Structure Prediction en_US
dc.subject Dynamic Programming en_US
dc.subject Repetitive Calculation en_US
dc.subject Sheet-Tree en_US
dc.subject Grouping-Tree en_US
dc.title Protein Β-Sheet Prediction Using an Efficient Dynamic Programming Algorithm en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Sabzekar, Mostafa/0000-0002-6886-1240
gdc.author.id Naghibzadeh, Mahmoud/0000-0001-5550-5565
gdc.author.id Naghibzadeh, Mahmoud/0000-0001-5550-5565
gdc.author.scopusid 35796344600
gdc.author.scopusid 6602810348
gdc.author.scopusid 57188978981
gdc.author.scopusid 7003852510
gdc.author.wosid Sabzekar, Mostafa/Aad-7807-2020
gdc.author.wosid Naghibzadeh, Mahmoud/A-6796-2015
gdc.author.wosid Naghibzadeh, Mahmoud/A-6796-2015
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Sabzekar, Mostafa; Naghibzadeh, Mahmoud; Eghdami, Mandie] Ferdowsi Univ Mashhad, Dept Comp Engn, Mashhad, Iran; [Aydin, Zafer] Abdullah Gul Univ, Dept Comp Engn, Kayseri, Turkey en_US
gdc.description.endpage 155 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 142 en_US
gdc.description.volume 70 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2750376939
gdc.identifier.pmid 28881217
gdc.identifier.wos WOS:000412960700016
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.8544482E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Computational Biology
gdc.oaire.keywords Algorithms
gdc.oaire.keywords Protein Structure, Secondary
gdc.oaire.popularity 5.61355E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0301 basic medicine
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0206 medical engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 0.40084413
gdc.openalex.normalizedpercentile 0.58
gdc.opencitations.count 9
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 19
gdc.plumx.newscount 1
gdc.plumx.scopuscites 10
gdc.scopus.citedcount 10
gdc.virtual.author Aydın, Zafer
gdc.wos.citedcount 7
relation.isAuthorOfPublication a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isAuthorOfPublication.latestForDiscovery a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files