A Deep Ensemble Approach for Long-Term Traffic Flow Prediction

dc.contributor.author Cini, Nevin
dc.contributor.author Aydin, Zafer
dc.date.accessioned 2025-09-25T10:38:28Z
dc.date.available 2025-09-25T10:38:28Z
dc.date.issued 2024
dc.description Cini, Nevin/0000-0001-5348-4043 en_US
dc.description.abstract In the last 50 years, with the growth of cities and increase in the number of vehicles and mobility, traffic has become troublesome. As a result, traffic flow prediction started to attract attention as an important research area. However, despite the extensive literature, traffic flow prediction still remains as an open research problem, specifically for long-term traffic flow prediction. Compared to the models developed for short-term traffic flow prediction, the number of models developed for long-term traffic flow prediction is very few. Based on this shortcoming, in this study, we focus on long-term traffic flow prediction and propose a novel deep ensemble model (DEM). In order to build this ensemble model, first, we developed a convolutional neural network (CNN), a long short-term memory (LSTM) network and a gated recurrent unit (GRU) network as deep learning models, which formed the base learners. In the next step, we combine the output of these models according to their individual forecasting success. We use another deep learning model to determine the success of the individual models. Our proposed model is a flexible ensemble prediction model that can be updated based on traffic data. To evaluate the performance of the proposed model, we use a publicly available dataset. Experimental results show that the developed DEM model has a mean square error of 0.06 and a mean absolute error of 0.15 for single-step prediction; it shows that achieves a mean square error of 0.25 and a mean absolute error of 0.32 for multi-step prediction. We compared our proposed model with many models in different categories; individual deep learning models (i.e., LSTM, CNN, GRU), selected traditional machine learning models (i.e., linear regression, decision tree regression, k-nearest-neighbors regression) and other ensemble models such as random-forest regression. These results also support the claim that ensemble learning models perform better than individual models. en_US
dc.description.sponsorship Abdullah Gul University en_US
dc.description.sponsorship No Statement Available en_US
dc.identifier.doi 10.1007/s13369-023-08672-1
dc.identifier.issn 2193-567X
dc.identifier.issn 2191-4281
dc.identifier.scopus 2-s2.0-85183417925
dc.identifier.uri https://doi.org/10.1007/s13369-023-08672-1
dc.identifier.uri https://hdl.handle.net/20.500.12573/3052
dc.language.iso en en_US
dc.publisher Springer Heidelberg en_US
dc.relation.ispartof Arabian Journal for Science and Engineering en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Deep Learning en_US
dc.subject Traffic Flow Prediction en_US
dc.subject Ensemble Learning en_US
dc.subject Long Short-Term Memory en_US
dc.subject Convolutional Neural Networks en_US
dc.subject Gated Recurrent Unit en_US
dc.title A Deep Ensemble Approach for Long-Term Traffic Flow Prediction en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Cini, Nevin/0000-0001-5348-4043
gdc.author.scopusid 57214945723
gdc.author.scopusid 7003852510
gdc.author.wosid Cn, Nn/Nxc-5067-2025
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Cini, Nevin] Artificial Intelligence Res & Dev Ctr, Sanliurfa, Turkiye; [Cini, Nevin; Aydin, Zafer] Abdullah Gul Univ, Dept Comp Engn, Kayseri, Turkiye en_US
gdc.description.endpage 12392 en_US
gdc.description.issue 9 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 12377 en_US
gdc.description.volume 49 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4391275244
gdc.identifier.wos WOS:001149226800001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.downloads 71
gdc.oaire.impulse 12.0
gdc.oaire.influence 3.2342766E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Ensemble learning
gdc.oaire.keywords Long short-term memory
gdc.oaire.keywords Deep learning
gdc.oaire.keywords Traffic flow prediction
gdc.oaire.keywords Convolutional neural networks
gdc.oaire.keywords Gated recurrent unit
gdc.oaire.popularity 1.0810213E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0502 economics and business
gdc.oaire.sciencefields 05 social sciences
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.views 157
gdc.openalex.collaboration National
gdc.openalex.fwci 6.47969314
gdc.openalex.normalizedpercentile 0.92
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 4
gdc.plumx.mendeley 25
gdc.plumx.scopuscites 16
gdc.scopus.citedcount 16
gdc.virtual.author Aydın, Zafer
gdc.wos.citedcount 12
relation.isAuthorOfPublication a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isAuthorOfPublication.latestForDiscovery a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files