Strategic Investment in BIST100: A Machine Learning Approach Using Symbolic Aggregate Approximation Clustering

dc.contributor.author Nalici, Mehmet Eren
dc.contributor.author Soylemez, Ismet
dc.contributor.author Unlu, Ramazan
dc.contributor.other 01. Abdullah Gül University
dc.contributor.other 02.02. Endüstri Mühendisliği
dc.contributor.other 02. Mühendislik Fakültesi
dc.contributor.other 07. Fen Bilimleri Enstitüsü
dc.contributor.other 07.03. Endüstri Mühendisliği Anabilim Dalı
dc.date.accessioned 2025-09-25T10:57:41Z
dc.date.available 2025-09-25T10:57:41Z
dc.date.issued 2025
dc.description Nalici, Mehmet Eren/0000-0002-7954-6916 en_US
dc.description.abstract This study employs the Symbolic Aggregate Approximation (SAX) clustering method to enhance investor decision-making on the Borsa Istanbul (BIST100) by identifying companies exhibiting analogous stock movements. The data from 81 BIST100 companies over a three-year period has been analyzed, with a focus on risk minimization and strategic investment. The SAX method, integrated with a dendrogram, categorizes stocks into sector-based and non-sector-based clusters, providing insights for portfolio optimization. The results demonstrate the effectiveness of the method in identifying relevant stock patterns across sectors, aiding in more informed investment decisions. This approach highlights the need for considering multiple factors in investment strategies, offering a new perspective on stock market analysis with advanced clustering techniques. en_US
dc.identifier.doi 10.23055/ijietap.2025.32.2.10273
dc.identifier.issn 1072-4761
dc.identifier.issn 1943-670X
dc.identifier.scopus 2-s2.0-105001969547
dc.identifier.uri https://doi.org/10.23055/ijietap.2025.32.2.10273
dc.identifier.uri https://hdl.handle.net/20.500.12573/4690
dc.language.iso en en_US
dc.publisher Univ Cincinnati industrial Engineering en_US
dc.relation.ispartof International Journal of Industrial Engineering-Theory Applications and Practice en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Bist100 en_US
dc.subject Financial Access en_US
dc.subject Machine Learning en_US
dc.subject Stock Market en_US
dc.subject Symbolic Aggregate Approximation (SAX) en_US
dc.title Strategic Investment in BIST100: A Machine Learning Approach Using Symbolic Aggregate Approximation Clustering en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Nalici, Mehmet Eren/0000-0002-7954-6916
gdc.author.institutional Nalici, Mehmet Eren
gdc.author.institutional Söylemez, İsmet
gdc.author.institutional Ünlü, Ramazan
gdc.author.scopusid 59725388900
gdc.author.scopusid 57198896486
gdc.author.scopusid 57197769375
gdc.author.wosid Söylemez, Ismet/Aag-4835-2021
gdc.author.wosid Nalici, Mehmet Eren/Htr-2909-2023
gdc.author.wosid Ünlü, Ramazan/C-3695-2019
gdc.author.wosid Nalici, Mehmet Eren/Htr-2909-2023
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Nalici, Mehmet Eren; Soylemez, Ismet; Unlu, Ramazan] Abdullah Gul Univ, Dept Ind Engn, Kayseri, Turkiye en_US
gdc.description.endpage 395 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 382 en_US
gdc.description.volume 32 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q4
gdc.identifier.wos WOS:001489890300001
gdc.opencitations.count 0
gdc.plumx.mendeley 7
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.wos.citedcount 2
relation.isAuthorOfPublication 20972f73-41b0-47c2-a4e8-b337adfe0565
relation.isAuthorOfPublication c89ccd63-5f90-42bf-8bcc-e556b0b329b9
relation.isAuthorOfPublication 045ac8d0-cc95-43c5-a2ab-81d9ae04437e
relation.isAuthorOfPublication.latestForDiscovery 20972f73-41b0-47c2-a4e8-b337adfe0565
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication bfbb34b6-53fb-4fb8-89e7-aa2f0299e86b
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication 151c1293-0aa6-4c6d-a93b-d1956fe5002d
relation.isOrgUnitOfPublication 5e03b17c-1c2a-4058-b67a-6a949192c48b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files