Improving Salary Offer Processes With Classification Based Machine Learning Models

dc.contributor.author Kaya, Rukiye
dc.contributor.author Saatci, Mehtap
dc.contributor.author Bakal, Gokhan
dc.date.accessioned 2025-09-25T10:48:45Z
dc.date.available 2025-09-25T10:48:45Z
dc.date.issued 2024
dc.description.abstract In job applications, salary is major motivational factor for employees and making accurate salary prediction is crucial for both employers and employees. Utilizing advanced technologies can significantly enhance the accuracy and efficiency of salary prediction process. In this study, we explore Machine Learning (ML) methods to enhance salary prediction process. We evaluated seven classification models for predicting salary categories, with the Artificial Neural Network (ANN) model achieving the highest accuracy at 58.2% on the test dataset, followed by the K-Nearest Neighbors (KNN) model with an accuracy of 56.8%. Additionally, we employed ensemble models to further enhance prediction accuracy. Among these, the Majority Voting Classifier using Hard Voting achieved the highest accuracy at 59.3%, demonstrating the potential of ensemble techniques in refining salary predictions. The developed salary prediction tool estimates the most appropriate salary category for each candidate and help mitigate potential biases in manual salary assessments, hence enables a more objective and consistent compensation system. ∗CRITICAL: Do Not Use Symbols, Special Characters, or Math in Paper Title or Abstract, and do not cite other papers in the abstract. © 2024 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1109/IDAP64064.2024.10710706
dc.identifier.isbn 9798331531492
dc.identifier.scopus 2-s2.0-85207916845
dc.identifier.uri https://doi.org/10.1109/IDAP64064.2024.10710706
dc.identifier.uri https://hdl.handle.net/20.500.12573/3988
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof -- 8th International Artificial Intelligence and Data Processing Symposium, IDAP 2024 -- Malatya; Inonu University, Faculty of Engineering -- 203423 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Artificial Neural Network (Ann) en_US
dc.subject K-Nearest Neighbors (Knn) en_US
dc.subject Machine Learning en_US
dc.subject Salary Prediction en_US
dc.subject Adversarial Machine Learning en_US
dc.subject Contrastive Learning en_US
dc.subject Earnings en_US
dc.subject K-Nearest Neighbors en_US
dc.subject Neural Network Models en_US
dc.subject Artificial Neural Network en_US
dc.subject High-Accuracy en_US
dc.subject Job Application en_US
dc.subject K-Near Neighbor en_US
dc.subject Machine Learning Models en_US
dc.subject Machine-Learning en_US
dc.subject Nearest-Neighbour en_US
dc.subject Neural-Networks en_US
dc.subject Prediction Process en_US
dc.subject Salary Prediction en_US
dc.subject Prediction Models en_US
dc.title Improving Salary Offer Processes With Classification Based Machine Learning Models en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57209215893
gdc.author.scopusid 59392214000
gdc.author.scopusid 57074041500
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Kaya] Rukiye, Department of Industrial Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Saatci] Mehtap, Department of Industrial Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Bakal] Gokhan, Department of Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey en_US
gdc.description.endpage 7
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.wosquality N/A
gdc.identifier.openalex W4403447944
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5349236E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.4744335E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 1.89409133
gdc.openalex.normalizedpercentile 0.85
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 6
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Bakal, Mehmet Gökhan
gdc.virtual.author Kaya, Rukiye
relation.isAuthorOfPublication 53ed538c-20d9-45c8-af59-7fa4d1b90cf7
relation.isAuthorOfPublication e4613350-87bc-4a27-956b-740fd0d03630
relation.isAuthorOfPublication.latestForDiscovery 53ed538c-20d9-45c8-af59-7fa4d1b90cf7
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication bfbb34b6-53fb-4fb8-89e7-aa2f0299e86b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files