A Reinforcement Learning-Based Demand Response Strategy Designed From the Aggregator's Perspective

dc.contributor.author Oh, Seongmun
dc.contributor.author Jung, Jaesung
dc.contributor.author Onen, Ahmet
dc.contributor.author Lee, Chul-Ho
dc.date.accessioned 2025-09-25T10:39:25Z
dc.date.available 2025-09-25T10:39:25Z
dc.date.issued 2022
dc.description Onen, Ahmet/0000-0001-7086-5112 en_US
dc.description.abstract The demand response (DR) program is a promising way to increase the ability to balance both supply and demand, optimizing the economic efficiency of the overall system. This study focuses on the DR participation strategy in terms of aggregators who offer appropriate DR programs to customers with flexible loads. DR aggregators engage in the electricity market according to customer behavior and must make decisions that increase the profits of both DR aggregators and customers. Customers use the DR program model, which sends its demand reduction capabilities to a DR aggregator that bids aggregate demand reduction to the electricity market. DR aggregators not only determine the optimal rate of incentives to present to the customers but can also serve customers and formulate an optimal energy storage system (ESS) operation to reduce their demands. This study formalized the problem as a Markov decision process (MDP) and used the reinforcement learning (RL) framework. In the RL framework, the DR aggregator and each customer are allocated to each agent, and the agents interact with the environment and are trained to make an optimal decision. The proposed method was validated using actual industrial and commercial customer demand profiles and market price profiles in South Korea. Simulation results demonstrated that the proposed method could optimize decisions from the perspective of the DR aggregator. en_US
dc.description.sponsorship Energy AI Convergence Research & Development Program through the National IT Industry Promotion Agency of Korea (NIPA) - Ministry of Science and ICT [1711151479]; Ajou University research fund en_US
dc.description.sponsorship This research was supported by Energy AI Convergence Research & Development Program through the National IT Industry Promotion Agency of Korea (NIPA) funded by the Ministry of Science and ICT (No. 1711151479). This work was supported by the Ajou University research fund. en_US
dc.identifier.doi 10.3389/fenrg.2022.957466
dc.identifier.issn 2296-598X
dc.identifier.scopus 2-s2.0-85139249201
dc.identifier.uri https://doi.org/10.3389/fenrg.2022.957466
dc.identifier.uri https://hdl.handle.net/20.500.12573/3138
dc.language.iso en en_US
dc.publisher Frontiers Media S.A. en_US
dc.relation.ispartof Frontiers in Energy Research en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Reinforcement Learning en_US
dc.subject Energy Storage System en_US
dc.subject Demand Response en_US
dc.subject Aggregator en_US
dc.subject Electricity Market en_US
dc.title A Reinforcement Learning-Based Demand Response Strategy Designed From the Aggregator's Perspective en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Onen, Ahmet/0000-0001-7086-5112
gdc.author.scopusid 57208372001
gdc.author.scopusid 54418735400
gdc.author.scopusid 55511777700
gdc.author.scopusid 27167621400
gdc.author.wosid Lee, Chul-Ho/D-2545-2009
gdc.author.wosid Jung, Jaesung/Hgu-0861-2022
gdc.author.wosid Onen, Ahmet/Ial-8894-2023
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Oh, Seongmun] Korea Elect Technol Inst, Energy Convergence Res Ctr, Seongnam, South Korea; [Jung, Jaesung] Ajou Univ, Dept Energy Syst Res, Suwon, South Korea; [Onen, Ahmet] Abdullah Gul Univ, Dept Elect Elect Engn, Kayseri, Turkey; [Onen, Ahmet] Sultan Qaboos Univ, Coll Engn, Dept Elect & Comp Engn, Muscat, Oman; [Lee, Chul-Ho] Texas State Univ, Dept Comp Sci, San Marcos, TX USA en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 10 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W4296098471
gdc.identifier.wos WOS:000862291500001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.downloads 69
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.6260893E-9
gdc.oaire.isgreen true
gdc.oaire.keywords reinforcement learning
gdc.oaire.keywords demand response
gdc.oaire.keywords energy storage system
gdc.oaire.keywords A
gdc.oaire.keywords electricity market
gdc.oaire.keywords aggregator
gdc.oaire.keywords General Works
gdc.oaire.popularity 3.3608176E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.views 98
gdc.openalex.collaboration International
gdc.openalex.fwci 0.32294016
gdc.openalex.normalizedpercentile 0.53
gdc.opencitations.count 1
gdc.plumx.mendeley 13
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.virtual.author Önen, Ahmet
gdc.wos.citedcount 4
relation.isAuthorOfPublication 0af75b8c-6d1f-435f-8af7-6b752056503e
relation.isAuthorOfPublication.latestForDiscovery 0af75b8c-6d1f-435f-8af7-6b752056503e
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files