A Noise-Aware Feature Selection Approach for Classification

dc.contributor.author Sabzekar, Mostafa
dc.contributor.author Aydin, Zafer
dc.date.accessioned 2025-09-25T10:39:17Z
dc.date.available 2025-09-25T10:39:17Z
dc.date.issued 2021
dc.description Sabzekar, Mostafa/0000-0002-6886-1240; en_US
dc.description.abstract A noise-aware version of support vector machines is utilized for feature selection in this paper. Combining this method and sequential backward search (SBS), a new algorithm for removing irrelevant features is proposed. Although feature selection methods in the literature which utilize support vector machines have provided acceptable results, noisy samples and outliers may affect the performance of SVM and feature selections method, consequently. Recently, we have proposed relaxed constrains SVM (RSVM) which handles noisy data and outliers. Each training sample in RSVM is associated with a degree of importance utilizing the fuzzy c-means clustering method. Therefore, a less importance degree is assigned to noisy data and outliers. Moreover, RSVM has more relaxed constraints that can reduce the effect of noisy samples. Feature selection increases the accuracy of different machine learning applications by eliminating noisy and irrelevant features. In the proposed RSVM-SBS feature selection algorithm, noisy data have small effect on eliminating irrelevant features. Experimental results using real-world data verify that RSVM-SBS has better results in comparison with other feature selection approaches utilizing support vector machines. en_US
dc.identifier.doi 10.1007/s00500-021-05630-7
dc.identifier.issn 1432-7643
dc.identifier.issn 1433-7479
dc.identifier.scopus 2-s2.0-85101080432
dc.identifier.uri https://doi.org/10.1007/s00500-021-05630-7
dc.identifier.uri https://hdl.handle.net/20.500.12573/3117
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Soft Computing en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Feature Selection en_US
dc.subject Noisy Data en_US
dc.subject Importance Degree en_US
dc.subject Sequential Backward Search en_US
dc.title A Noise-Aware Feature Selection Approach for Classification en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Sabzekar, Mostafa/0000-0002-6886-1240
gdc.author.scopusid 35796344600
gdc.author.scopusid 7003852510
gdc.author.wosid Sabzekar, Mostafa/Aad-7807-2020
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Sabzekar, Mostafa] Birjand Univ Technol, Dept Comp Engn, Birjand, Iran; [Aydin, Zafer] Abdullah Gul Univ, Dept Comp Engn, Kayseri, Turkey en_US
gdc.description.endpage 6400 en_US
gdc.description.issue 8 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 6391 en_US
gdc.description.volume 25 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W3130123301
gdc.identifier.wos WOS:000618916600002
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 9.0
gdc.oaire.influence 2.9575393E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.1422295E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 1.02219479
gdc.openalex.normalizedpercentile 0.77
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 8
gdc.plumx.mendeley 8
gdc.plumx.scopuscites 13
gdc.scopus.citedcount 13
gdc.virtual.author Aydın, Zafer
gdc.wos.citedcount 10
relation.isAuthorOfPublication a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isAuthorOfPublication.latestForDiscovery a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files