Multi-Method Text Summarization: Evaluating Extractive and BART-Based Approaches on CNN/Daily Mail

dc.contributor.author Inal, Yasin
dc.contributor.author Bakal, Gokhan
dc.contributor.author Esit, Muhammed
dc.date.accessioned 2025-09-25T10:51:11Z
dc.date.available 2025-09-25T10:51:11Z
dc.date.issued 2025
dc.description.abstract With the exponential growth of digital content, efficient text summarization has become increasingly crucial for managing information overload. This paper presents a comprehensive approach to text summarization using both extractive and abstractive methods, implemented on the CNN/Daily Mail dataset. We leverage pre-trained BART (Bidirectional and AutoRegressive Transformers) models and fine-tuning techniques to generate high-quality summaries. Our approach demonstrates significant improvements, with our best model trained on 287 k samples achieving ROUGE-1 F1 scores of 0.4174, ROUGE-2 F1 scores of 0.1932, and ROUGE-L F1 scores of 0.2910. We provide detailed comparisons between extractive methods and various BART model configurations, analyzing the impact of training dataset size and model architecture on summarization quality. Additionally, we share our implementation through an opensource NLP toolkit to facilitate further research and practical applications in the field. © 2025 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1109/ISAS66241.2025.11101791
dc.identifier.isbn 9798331514822
dc.identifier.scopus 2-s2.0-105014935690
dc.identifier.uri https://doi.org/10.1109/ISAS66241.2025.11101791
dc.identifier.uri https://hdl.handle.net/20.500.12573/4242
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof -- 9th International Symposium on Innovative Approaches in Smart Technologies, ISAS 2025 -- Gaziantep -- 211342 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Abstractive Summarization en_US
dc.subject Bart en_US
dc.subject Deep Learning en_US
dc.subject Extractive Summarization en_US
dc.subject Natural Language Processing en_US
dc.subject Text Summarization en_US
dc.subject Abstracting en_US
dc.subject Data Mining en_US
dc.subject Natural Language Processing Systems en_US
dc.subject Text Processing en_US
dc.subject Abstractive Summarization en_US
dc.subject Auto-Regressive en_US
dc.subject Bidirectional and Autoregressive Transformer en_US
dc.subject Deep Learning en_US
dc.subject Extractive Summarizations en_US
dc.subject F1 Scores en_US
dc.subject Language Processing en_US
dc.subject Natural Language Processing en_US
dc.subject Natural Languages en_US
dc.subject Text Summarisation en_US
dc.title Multi-Method Text Summarization: Evaluating Extractive and BART-Based Approaches on CNN/Daily Mail en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 59169834900
gdc.author.scopusid 57074041500
gdc.author.scopusid 60082950700
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Inal] Yasin, Department of Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Bakal] Gokhan, Department of Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Esit] Muhammed, Department of Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey en_US
gdc.description.endpage 7
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.wosquality N/A
gdc.identifier.openalex W4413180542
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5349236E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.8669784E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.13
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Bakal, Mehmet Gökhan
relation.isAuthorOfPublication 53ed538c-20d9-45c8-af59-7fa4d1b90cf7
relation.isAuthorOfPublication.latestForDiscovery 53ed538c-20d9-45c8-af59-7fa4d1b90cf7
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files