Detection and Control of Epileptiform Regime in the Hodgkin–Huxley Artificial Neural Networks via Quantum Algorithms

dc.contributor.author Borisenok, S.
dc.date.accessioned 2025-09-25T10:44:26Z
dc.date.available 2025-09-25T10:44:26Z
dc.date.issued 2022
dc.description.abstract The problem of detection and the following suppression of epileptiform dynamics in artificial neural networks (ANN) still is a hot topic in modern theoretical and applied neuroscience. For the purpose of such modeling, the Hodgkin–Huxley (HH) elements are important due to the variety of their behavior such as resting, singular spikes, and spike trains and bursts. This dynamical spectrum of individual HH neurons can cause an epileptiform regime originated in the hyper-synchronization of the cell outcomes. Our model covers the detection and suppression of ictal behavior in a small ANN consisting of HH cells. The model follows our approach [Borisenok et al., 2018] for the HH neurons as a classical dynamical system driving the collective neural bursting, but here we use a quantum paradigm-based algorithm emulated with the pair of HH neurons. Such emulation becomes possible due to the complexity of the individual 4d HH dynamics. The linear chain of two HH neurons is connected to the rest of ANN and works autonomously. The first neuron plays a role of the detecting element for the hyper-synchronization in the ANN and the quantum algorithm emulator; while the second one works as a measuring element (emulation of the quantum measurement converting the signals into the classical domain) and the trigger for the feedback suppressing the epileptiform regime. We use here the speed gradient algorithm for controling the emulating neuron and discuss its pros and cons to compare with our classical model of epileptiform suppression. © 2022 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.35470/2226-4116-2022-11-1-7-12
dc.identifier.issn 2223-7038
dc.identifier.issn 2226-4116
dc.identifier.scopus 2-s2.0-85133216056
dc.identifier.uri https://doi.org/10.35470/2226-4116-2022-11-1-7-12
dc.identifier.uri https://hdl.handle.net/20.500.12573/3596
dc.language.iso en en_US
dc.publisher Institute for Problems in Mechanical Engineering, Russian Academy of Sciences en_US
dc.relation.ispartof Cybernetics and Physics en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Classical Emulation of Quantum Algorithms en_US
dc.subject Epileptiform Dynamics en_US
dc.subject Hodgkin– Huxley Neurons en_US
dc.subject Small–Scale Anns en_US
dc.subject Speed Gradient Feedback Control en_US
dc.title Detection and Control of Epileptiform Regime in the Hodgkin–Huxley Artificial Neural Networks via Quantum Algorithms en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Borisenok, S.
gdc.author.scopusid 14055402800
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Borisenok] S., Department of Electrical and Electronic Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey, Boğaziçi Üniversitesi, Bebek, Turkey en_US
gdc.description.endpage 10 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 5 en_US
gdc.description.volume 11 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4281646088
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.downloads 71
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.5933282E-9
gdc.oaire.isgreen true
gdc.oaire.keywords small–scale ANNs
gdc.oaire.keywords classical emulation of quantum algorithms
gdc.oaire.keywords Speed gradient feedback control
gdc.oaire.keywords epileptiform dynamics
gdc.oaire.keywords Hodgkin– Huxley neurons
gdc.oaire.popularity 2.5433013E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.views 142
gdc.openalex.collaboration National
gdc.openalex.fwci 0.39159764
gdc.openalex.normalizedpercentile 0.6
gdc.opencitations.count 1
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.virtual.author Borısenok, Sergey
relation.isAuthorOfPublication c6cd9cda-f721-4de6-aeec-0615863628a9
relation.isAuthorOfPublication.latestForDiscovery c6cd9cda-f721-4de6-aeec-0615863628a9
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication f22f14aa-23ad-40e4-bc25-b9705d4051ed
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files