Assessment of Los Angeles Abrasion Value (LAAV) and Magnesium Sulphate Soundness (MWL) of Rock Aggregates Using Gene Expression Programming and Artificial Neural Networks

dc.contributor.author Koken, Ekin
dc.date.accessioned 2025-09-25T10:41:15Z
dc.date.available 2025-09-25T10:41:15Z
dc.date.issued 2022
dc.description Koken, Ekin/0000-0003-0178-329X en_US
dc.description.abstract It has been acknowledged that two important rock aggregate properties are the Los Angeles abrasion value (LAAV) and magnesium sulphate soundness (Mwl). However, the determination of these properties is relatively challenging due to special sampling requirements and tedious testing procedures. In this stu-dy, detailed laboratory studies were carried out to predict the LAAV and Mwl for 25 different rock types located in NW Turkey. For this purpose, mineralogical, physical, mechanical, and aggregate properties were determined for each rock type. Strong predictive models were established based on gene expression programming (GEP) and artificial neural network (ANN) methodologies. The performance of the proposed models was evaluated using several statistical indicators, and the statistical analysis results demonstra-ted that the ANN-based proposed models with the correlation of determination (R2) value greater than 0.98 outperformed the other predictive models established in this study. Hence, the ANN-based predictive models can reliably be used to predict the LAAV and Mwl for the investigated rock types. In addition, the suitability of the investigated rock types for use in bituminous paving mixtures was also evaluated based on the ASTM D692/D692M standard. Accordingly, most of the investigated rock types can be used in bituminous paving mixtures. In conclusion, it can be claimed that the proposed predictive models with their explicit mathematical formulations are believed to save time and provide practical knowledge for evaluating the suitability of the rock aggregates in pavement engineering design studies in NW Turkey. en_US
dc.identifier.doi 10.24425/ams.2022.142407
dc.identifier.issn 0860-7001
dc.identifier.issn 1689-0469
dc.identifier.scopus 2-s2.0-85141499329
dc.identifier.uri https://doi.org/10.24425/ams.2022.142407
dc.identifier.uri https://hdl.handle.net/20.500.12573/3337
dc.language.iso en en_US
dc.publisher Polska Akad Nauk, Polish Acad Sciences en_US
dc.relation.ispartof Archives of Mining Sciences en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Rock Aggregate en_US
dc.subject Aggregate Properties en_US
dc.subject Los Angeles Abrasion Loss en_US
dc.subject Magnesium Sulphate Soundness en_US
dc.subject Gene Expression Programming en_US
dc.subject Artificial Neural Network en_US
dc.title Assessment of Los Angeles Abrasion Value (LAAV) and Magnesium Sulphate Soundness (MWL) of Rock Aggregates Using Gene Expression Programming and Artificial Neural Networks en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Koken, Ekin/0000-0003-0178-329X
gdc.author.institutional Koken, Ekin
gdc.author.scopusid 57193992490
gdc.author.wosid Köken, Ekin/Aaa-5063-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Koken, Ekin] Abdullah Gul Univ, Nanotechnol Engn Dept, TR-38100 Kayseri, Turkey en_US
gdc.description.endpage 422 en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 401 en_US
gdc.description.volume 67 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W4384933839
gdc.identifier.wos WOS:000869783200002
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.5507811E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.5748464E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 1.08987952
gdc.openalex.normalizedpercentile 0.71
gdc.opencitations.count 2
gdc.plumx.mendeley 6
gdc.plumx.scopuscites 5
gdc.scopus.citedcount 5
gdc.virtual.author Köken, Ekin
gdc.wos.citedcount 4
relation.isAuthorOfPublication 9352c019-c944-4e23-a8e2-c73fac861cb6
relation.isAuthorOfPublication.latestForDiscovery 9352c019-c944-4e23-a8e2-c73fac861cb6
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 03adf3b0-3511-421e-b492-8fe188140fc0
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files