A Deep Learning Approach With Bayesian Optimization and Ensemble Classifiers for Detecting Denial of Service Attacks

dc.contributor.author Gormez, Yasin
dc.contributor.author Aydin, Zafer
dc.contributor.author Karademir, Ramazan
dc.contributor.author Gungor, Vehbi C.
dc.date.accessioned 2025-09-25T10:38:28Z
dc.date.available 2025-09-25T10:38:28Z
dc.date.issued 2020
dc.description Gormez, Yasin/0000-0001-8276-2030; en_US
dc.description.abstract Detecting malicious behavior is important for preventing security threats in a computer network. Denial of Service (DoS) is among the popular cyber attacks targeted at web sites of high-profile organizations and can potentially have high economic and time costs. In this paper, several machine learning methods including ensemble models and autoencoder-based deep learning classifiers are compared and tuned using Bayesian optimization. The autoencoder framework enables to extract new features by mapping the original input to a new space. The methods are trained and tested both for binary and multi-class classification on Digiturk and Labris datasets, which were introduced recently for detecting various types of DDoS attacks. The best performing methods are found to be ensembles though deep learning classifiers achieved comparable level of accuracy. en_US
dc.identifier.doi 10.1002/dac.4401
dc.identifier.issn 1074-5351
dc.identifier.issn 1099-1131
dc.identifier.scopus 2-s2.0-85085110143
dc.identifier.uri https://doi.org/10.1002/dac.4401
dc.identifier.uri https://hdl.handle.net/20.500.12573/3053
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.ispartof International Journal of Communication Systems en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Autoencoder en_US
dc.subject Deep Learning en_US
dc.subject Denial of Service Attacks en_US
dc.subject Machine Learning en_US
dc.subject Network Anomaly Detection en_US
dc.title A Deep Learning Approach With Bayesian Optimization and Ensemble Classifiers for Detecting Denial of Service Attacks en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Gormez, Yasin/0000-0001-8276-2030
gdc.author.scopusid 57195222392
gdc.author.scopusid 7003852510
gdc.author.scopusid 55942932600
gdc.author.scopusid 10739803300
gdc.author.wosid Görmez, Yasin/Jef-8096-2023
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Gormez, Yasin; Aydin, Zafer; Gungor, Vehbi C.] Abdullah Gul Univ, Dept Comp Engn, Kayseri, Turkey; [Karademir, Ramazan] Digiturk, Enterprise Solut Dept, Informat Technol, Istanbul, Turkey en_US
gdc.description.issue 11 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 33 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W3022516843
gdc.identifier.wos WOS:000530648800001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 9.0
gdc.oaire.influence 3.5047358E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.5175639E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 2.54298661
gdc.openalex.normalizedpercentile 0.89
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 14
gdc.plumx.crossrefcites 8
gdc.plumx.mendeley 62
gdc.plumx.scopuscites 19
gdc.scopus.citedcount 19
gdc.virtual.author Aydın, Zafer
gdc.wos.citedcount 13
relation.isAuthorOfPublication a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isAuthorOfPublication.latestForDiscovery a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files