Recent Advances in Machine Learning for Network Automation in the O-RAN
| dc.contributor.author | Hamdan, Mutasem Q. | |
| dc.contributor.author | Lee, Haeyoung | |
| dc.contributor.author | Triantafyllopoulou, Dionysia | |
| dc.contributor.author | Borralho, Ruben | |
| dc.contributor.author | Kose, Abdulkadir | |
| dc.contributor.author | Amiri, Esmaeil | |
| dc.contributor.author | Tafazolli, Rahim | |
| dc.date.accessioned | 2025-09-25T10:56:25Z | |
| dc.date.available | 2025-09-25T10:56:25Z | |
| dc.date.issued | 2023 | |
| dc.description | Zitouni, Rafik/0000-0002-1675-9180; Hamdan, Mutasem/0000-0003-2331-4021; Pozza, Riccardo/0000-0002-8025-9455; Chen, Gaojie/0000-0003-2978-0365; Kose, Abdulkadir/0000-0002-6877-1392; Lee, Haeyoung/0000-0002-5760-6623; Amiri, Esmaeil/0009-0006-3520-6350; Triantafyllopoulou, Dionysia/0000-0002-8150-4803; Heliot, Fabien/0000-0003-3583-3435; Bagheri, Hamidreza/0000-0002-4372-0281 | en_US |
| dc.description.abstract | The evolution of network technologies has witnessed a paradigm shift toward open and intelligent networks, with the Open Radio Access Network (O-RAN) architecture emerging as a promising solution. O-RAN introduces disaggregation and virtualization, enabling network operators to deploy multi-vendor and interoperable solutions. However, managing and automating the complex O-RAN ecosystem presents numerous challenges. To address this, machine learning (ML) techniques have gained considerable attention in recent years, offering promising avenues for network automation in O-RAN. This paper presents a comprehensive survey of the current research efforts on network automation usingML in O-RAN.We begin by providing an overview of the O-RAN architecture and its key components, highlighting the need for automation. Subsequently, we delve into O-RAN support forML techniques. The survey then explores challenges in network automation usingML within the O-RAN environment, followed by the existing research studies discussing application of ML algorithms and frameworks for network automation in O-RAN. The survey further discusses the research opportunities by identifying important aspects whereML techniques can benefit. | en_US |
| dc.description.sponsorship | The authors would like to acknowledge the support of the 5GIC/6GIC members for this work.; EPSRC [EP/W016524/1] Funding Source: UKRI | en_US |
| dc.description.sponsorship | The authors would like to acknowledge the support of the 5GIC/6GIC members for this work. | en_US |
| dc.identifier.doi | 10.3390/s23218792 | |
| dc.identifier.issn | 1424-8220 | |
| dc.identifier.scopus | 2-s2.0-85176899516 | |
| dc.identifier.uri | https://doi.org/10.3390/s23218792 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/4548 | |
| dc.language.iso | en | en_US |
| dc.publisher | MDPI | en_US |
| dc.relation.ispartof | Sensors | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Open Radio Access Networks | en_US |
| dc.subject | Machine Learning | en_US |
| dc.subject | Artificial Intelligence | en_US |
| dc.title | Recent Advances in Machine Learning for Network Automation in the O-RAN | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Zitouni, Rafik/0000-0002-1675-9180 | |
| gdc.author.id | Hamdan, Mutasem/0000-0003-2331-4021 | |
| gdc.author.id | Pozza, Riccardo/0000-0002-8025-9455 | |
| gdc.author.id | Chen, Gaojie/0000-0003-2978-0365 | |
| gdc.author.id | Kose, Abdulkadir/0000-0002-6877-1392 | |
| gdc.author.id | Lee, Haeyoung/0000-0002-5760-6623 | |
| gdc.author.id | Bagheri, Hamidreza/0000-0002-4372-0281 | |
| gdc.author.scopusid | 57212414707 | |
| gdc.author.scopusid | 55382750600 | |
| gdc.author.scopusid | 21744322200 | |
| gdc.author.scopusid | 57201718951 | |
| gdc.author.scopusid | 56810884500 | |
| gdc.author.scopusid | 57208127835 | |
| gdc.author.scopusid | 49865158500 | |
| gdc.author.wosid | Chen, Gaojie/Afl-8747-2022 | |
| gdc.author.wosid | Triantafyllopoulou, Dionysia/Hji-3025-2023 | |
| gdc.author.wosid | Foh, Chuan/A-3693-2011 | |
| gdc.author.wosid | Chen, Gaojie/R-6483-2018 | |
| gdc.author.wosid | Hamdan, Mutasem/Aen-5798-2022 | |
| gdc.author.wosid | Bagheri, Hamidreza/Jyp-6088-2024 | |
| gdc.author.wosid | Tafazolli, Rahim/Aaf-8263-2019 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | true | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Hamdan, Mutasem Q.] Samsung Elect R&D Inst, Staines TW18 4QE, England; [Lee, Haeyoung] Univ Hertfordshire, Sch Phys Engn & Comp Sci, Hatfield AL10 9AB, England; [Triantafyllopoulou, Dionysia] Tech Univ Chemnitz, Professorship Commun Engn, D-09111 Chemnitz, Germany; [Borralho, Ruben; Amiri, Esmaeil; Mulvey, David; Zitouni, Rafik; Pozza, Riccardo; Hunt, Bernie; Foh, Chuan Heng; Heliot, Fabien; Chen, Gaojie; Xiao, Pei; Wang, Ning; Tafazolli, Rahim] Univ Surrey, Inst Commun Syst, 5GIC & 6GIC, Guildford GU2 7XH, England; [Kose, Abdulkadir] Abdullah Gul Univ, Dept Comp Engn, TR-38080 Kayseri, Turkiye; [Yu, Wenjuan] Univ Lancaster, Sch Comp & Commun, InfoLab21, Lancaster LA1 4WA, England; [Bagheri, Hamidreza] York St John Univ, Sch Sci Technol & Hlth, York YO31 7EX, England | en_US |
| gdc.description.issue | 21 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 8792 | |
| gdc.description.volume | 23 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W4388019302 | |
| gdc.identifier.pmid | 37960490 | |
| gdc.identifier.wos | WOS:001099561900001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.index.type | PubMed | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.downloads | 129 | |
| gdc.oaire.impulse | 20.0 | |
| gdc.oaire.influence | 4.5285575E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | machine learning | |
| gdc.oaire.keywords | Chemical technology | |
| gdc.oaire.keywords | open radio access networks | |
| gdc.oaire.keywords | TP1-1185 | |
| gdc.oaire.keywords | artificial intelligence | |
| gdc.oaire.keywords | Article | |
| gdc.oaire.keywords | 004 | |
| gdc.oaire.popularity | 1.77293E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.views | 134 | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 3.64944576 | |
| gdc.openalex.normalizedpercentile | 0.92 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.crossrefcites | 6 | |
| gdc.plumx.mendeley | 38 | |
| gdc.plumx.scopuscites | 19 | |
| gdc.scopus.citedcount | 19 | |
| gdc.virtual.author | Köse, Abdulkadir | |
| gdc.wos.citedcount | 16 | |
| relation.isAuthorOfPublication | 42aba6b2-fe43-4ac7-9d7e-b936d6b2761f | |
| relation.isAuthorOfPublication.latestForDiscovery | 42aba6b2-fe43-4ac7-9d7e-b936d6b2761f | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication | 52f507ab-f278-4a1f-824c-44da2a86bd51 | |
| relation.isOrgUnitOfPublication | ef13a800-4c99-4124-81e0-3e25b33c0c2b | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
