Data-Driven Local Control Design for Dead Band Control of Load Tap Changers

dc.contributor.author Savasci, Alper
dc.contributor.author Ceylan, Oguzhan
dc.contributor.author Paudyal, Sumit
dc.date.accessioned 2025-09-25T10:43:27Z
dc.date.available 2025-09-25T10:43:27Z
dc.date.issued 2024
dc.description.abstract This study presents an off-line optimization-guided machine learning approach for coordinating the local control rules of on-load tap changers (OLTCs) and step-voltage regulators (SVRs). Based on a bang-bang control rule, these legacy devices autonomously regulate the feeder voltage around the nominal level by varying the tap position in the lower or raise direction. The characterizing parameter of the local control rule is the dead band, which affects the number of tap switching in operation and is directly related to the economical use life of the equipment. The bandwidth is typically set within a standard voltage range and is generally kept constant in daily operation. However, adjusting the bandwidth dynamically can prevent excessive tap switching while maintaining satisfactory voltage regulation for varying loading and distributed generation conditions. Our approach aims to set the bandwidth parameter systematically and efficiently through a machine learning-based scheme, which is trained with a dataset formed by solving the distribution network optimal power flow (DOPF) problem. The performance of learning the bandwidth parameter is demonstrated on the modified 33-node feeder, which is promising for integrated voltage control schemes. en_US
dc.identifier.doi 10.1109/UPEC61344.2024.10892461
dc.identifier.isbn 9798350379747
dc.identifier.isbn 9798350379730
dc.identifier.scopus 2-s2.0-86000797359
dc.identifier.uri https://doi.org/10.1109/UPEC61344.2024.10892461
dc.identifier.uri https://hdl.handle.net/20.500.12573/3560
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.ispartof 59th International Universities Power Engineering Conference -- SEP 02-06, 2024 -- Cardiff, ENGLAND en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Distribution Grid en_US
dc.subject Optimal Power Flow en_US
dc.subject Voltage Control en_US
dc.subject Machine Learning en_US
dc.title Data-Driven Local Control Design for Dead Band Control of Load Tap Changers en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57214754719
gdc.author.scopusid 26665865200
gdc.author.scopusid 26423147300
gdc.author.wosid Ceylan, Oguzhan/Aag-1749-2019
gdc.author.wosid Savasci, Alper/Adr-3958-2022
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Savasci, Alper] Abdullah Gul Univ, Kayseri, Turkiye; [Ceylan, Oguzhan] Kadir Has Univ, Istanbul, Turkiye; [Paudyal, Sumit] Florida Int Univ, Miami, FL USA en_US
gdc.description.endpage 6
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W4407938816
gdc.identifier.wos WOS:001458230200043
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5349236E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.4744335E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.36
gdc.opencitations.count 0
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Savaşcı, Alper
gdc.wos.citedcount 0
relation.isAuthorOfPublication a7b79ba6-bfbe-46e0-b970-cbc66554ea95
relation.isAuthorOfPublication.latestForDiscovery a7b79ba6-bfbe-46e0-b970-cbc66554ea95
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication f22f14aa-23ad-40e4-bc25-b9705d4051ed
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files