The Impacts of Different Proxies for Financialization on Carbon Emissions in Top-Ten Emitter Countries
| dc.contributor.author | Amin, Azka | |
| dc.contributor.author | Dogan, Eyup | |
| dc.contributor.author | Khan, Zeeshan | |
| dc.date.accessioned | 2025-09-25T10:59:16Z | |
| dc.date.available | 2025-09-25T10:59:16Z | |
| dc.date.issued | 2020 | |
| dc.description | Khan, Zeeshan/0000-0003-1374-0836; Amin, Azka/0000-0002-6404-9132; Dogan, Eyup/0000-0003-0476-5177; | en_US |
| dc.description.abstract | The nexus of financialization and carbon emissions has been widely discussed in the literature. A vast body of literature that estimates the impact of financialization on carbon emissions proxies financialization with either domestic credit or market capitalization. However, these representatives do not fully respond to the complicated nature of financial development. To till the gaps in the existing literature, nine different proxies for financial development are used in the links with carbon emissions in the framework of EKC theory for the years 1980-2014. This study exposes reliable and robust empirical results due to the use of a number of proxies for financialization and second-generation econometric approaches in the empirical analysis. The quantile regression approach deals with unobserved heterogeneity for each cross-section and estimates different slope parameters at varying quantiles. Because non-normality and heterogeneity are detected in datasek quantile regression provides more robust and reliable estimates than conventional econometric techniques. Results from quantile regression estimator support mixed effects of financial development on carbon emissions over quantiles: in addition, the impact of financial development on carbon emissions is varying not only for each quantile but also for different proxies of financial development. The EKC hypothesis is validated for the top-ten emitter economies. Interpretations and policy suggestions are further discussed in the present study. (C) 2020 Elsevier B.V. All rights reserved. | en_US |
| dc.identifier.doi | 10.1016/j.scitotenv.2020.140127 | |
| dc.identifier.issn | 0048-9697 | |
| dc.identifier.issn | 1879-1026 | |
| dc.identifier.scopus | 2-s2.0-85086887508 | |
| dc.identifier.uri | https://doi.org/10.1016/j.scitotenv.2020.140127 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/4816 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.relation.ispartof | Science of the Total Environment | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Financialization | en_US |
| dc.subject | Carbon Emissions | en_US |
| dc.subject | Top-Ten Emitters | en_US |
| dc.subject | Quantile Regression | en_US |
| dc.title | The Impacts of Different Proxies for Financialization on Carbon Emissions in Top-Ten Emitter Countries | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Khan, Zeeshan/0000-0003-1374-0836 | |
| gdc.author.id | Amin, Azka/0000-0002-6404-9132 | |
| gdc.author.id | Dogan, Eyup/0000-0003-0476-5177 | |
| gdc.author.scopusid | 57217247080 | |
| gdc.author.scopusid | 56088161200 | |
| gdc.author.scopusid | 57204108102 | |
| gdc.author.wosid | Dogan, Eyup/J-8676-2019 | |
| gdc.author.wosid | Khan, Zeeshan/Hch-2655-2022 | |
| gdc.author.wosid | Amin, Azka/Aaz-6312-2021 | |
| gdc.bip.impulseclass | C3 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C3 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Dogan, Eyup] Abdullah Gul Univ, Dept Econ, Kayseri, Turkey; [Amin, Azka] Iqra Univ, Fac Business Adm, Karachi, Pakistan; [Khan, Zeeshan] Tsinghua Univ, Sch Econ & Management, Beijing, Peoples R China | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 140127 | |
| gdc.description.volume | 740 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded - Social Science Citation Index | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3034996243 | |
| gdc.identifier.pmid | 32927547 | |
| gdc.identifier.wos | WOS:000562379000010 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.index.type | PubMed | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 88.0 | |
| gdc.oaire.influence | 6.24657E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 1.105987E-7 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0211 other engineering and technologies | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 24.41724418 | |
| gdc.openalex.normalizedpercentile | 0.99 | |
| gdc.openalex.toppercent | TOP 1% | |
| gdc.opencitations.count | 127 | |
| gdc.plumx.crossrefcites | 136 | |
| gdc.plumx.mendeley | 118 | |
| gdc.plumx.pubmedcites | 9 | |
| gdc.plumx.scopuscites | 136 | |
| gdc.scopus.citedcount | 136 | |
| gdc.virtual.author | Doğan, Eyüp | |
| gdc.wos.citedcount | 134 | |
| relation.isAuthorOfPublication | ce550f72-e658-4f7a-b18f-db863e2acaf9 | |
| relation.isAuthorOfPublication.latestForDiscovery | ce550f72-e658-4f7a-b18f-db863e2acaf9 | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication | 0acb04bc-dc44-4d23-bf19-b42148204f24 | |
| relation.isOrgUnitOfPublication | f2803143-783c-4edc-859a-7a1421d6d5c6 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
