Thickness-Tunable Self-Assembled Colloidal Nanoplatelet Films Enable Ultrathin Optical Gain Media
| dc.contributor.author | Erdem, Onur | |
| dc.contributor.author | Foroutan, Sina | |
| dc.contributor.author | Gheshlaghi, Negar | |
| dc.contributor.author | Guzelturk, Burak | |
| dc.contributor.author | Altintas, Yemliha | |
| dc.contributor.author | Demir, Hilmi Volkan | |
| dc.date.accessioned | 2025-09-25T10:59:47Z | |
| dc.date.available | 2025-09-25T10:59:47Z | |
| dc.date.issued | 2020 | |
| dc.description | Demir, Hilmi Volkan/0000-0003-1793-112X; Erdem, Onur/0000-0003-2212-965X; Foroutan Barenji, Sina/0000-0003-0623-8987; | en_US |
| dc.description.abstract | We propose and demonstrate construction of highly uniform, multilayered superstructures of CdSe/CdZnS core/shell colloidal nanoplatelets (NPLs) using liquid interface self-assembly. These NPLs are sequentially deposited onto a solid substrate into slabs having monolayer-precise thickness across tens of cm(2) areas. Because of near-unity surface coverage and excellent uniformity, amplified spontaneous emission (ASE) is observed from an uncharacteristically thin film having 6 NPL layers, corresponding to a mere 42 nm thickness. Furthermore, systematic studies on optical gain of these NPL superstructures having thicknesses ranging from 6 to 15 layers revealed the gradual reduction in gain threshold with increasing number of layers, along with a continuous spectral shift of the ASE peak (similar to 18 nm). These observations can be explained by the change in the optical mode confinement factor with the NPL waveguide thickness and propagation wavelength. This bottom-up construction technique for thickness-tunable, three-dimensional NPL superstructures can be used for large-area device fabrication. | en_US |
| dc.description.sponsorship | Singapore National Research Foundation [NRF-NRFI2016-08]; TUBITAK [115E679, 2211]; TUBA | en_US |
| dc.description.sponsorship | The authors acknowledge the financial support from the Singapore National Research Foundation under the program NRF-NRFI2016-08 and in part from TUBITAK 115E679. The authors thank Mr. Mustafa Guler for TEM imaging of the as synthesized NPLs and preparation of the TEM cross-sectional sample, Mr. Semih Bozkurt for his support on the AFM characterization, Dr. Gokce Celik for her help on the ellipsometric analyses and confocal microscopy imaging, Mr. Emre Unal for his assistance in photography of the large -area sample, Mr. Mete Duman for his assistance on the recording of the supplementary video, and Dr. Kivanc Gungor for fruitful discussions. O.E. acknowledges TUBITAK for the financial support through BIDEB 2211 program. H.V.D. gratefully acknowledges support from TUBA. | en_US |
| dc.identifier.doi | 10.1021/acs.nanolett.0c02153 | |
| dc.identifier.issn | 1530-6984 | |
| dc.identifier.issn | 1530-6992 | |
| dc.identifier.scopus | 2-s2.0-85090613747 | |
| dc.identifier.uri | https://doi.org/10.1021/acs.nanolett.0c02153 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/4882 | |
| dc.language.iso | en | en_US |
| dc.publisher | Amer Chemical Soc | en_US |
| dc.relation.ispartof | Nano Letters | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Liquid Interface Self-Assembly | en_US |
| dc.subject | Colloidal Nanoplatelets | en_US |
| dc.subject | Planar Waveguides | en_US |
| dc.subject | Optical Gain | en_US |
| dc.subject | Amplified Spontaneous Emission | en_US |
| dc.title | Thickness-Tunable Self-Assembled Colloidal Nanoplatelet Films Enable Ultrathin Optical Gain Media | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Demir, Hilmi Volkan/0000-0003-1793-112X | |
| gdc.author.id | Erdem, Onur/0000-0003-2212-965X | |
| gdc.author.id | Foroutan Barenji, Sina/0000-0003-0623-8987 | |
| gdc.author.scopusid | 57211551782 | |
| gdc.author.scopusid | 57219442200 | |
| gdc.author.scopusid | 57190373744 | |
| gdc.author.scopusid | 36462335100 | |
| gdc.author.scopusid | 55796022900 | |
| gdc.author.scopusid | 35552742000 | |
| gdc.author.wosid | Demir, Hilmi/Aav-2194-2020 | |
| gdc.author.wosid | Altintas, Yemliha/Abe-7710-2021 | |
| gdc.author.wosid | Foroutan Barenji, Sina/I-5262-2019 | |
| gdc.bip.impulseclass | C3 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C3 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Erdem, Onur; Foroutan, Sina; Gheshlaghi, Negar; Altintas, Yemliha; Demir, Hilmi Volkan] Bilkent Univ, UNAM Inst Mat Sci & Nanotechnol, Dept Elect & Elect Engn, Dept Phys, TR-06800 Ankara, Turkey; [Guzelturk, Burak] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA; [Altintas, Yemliha] Abdullah Gul Univ, Dept Mat Sci & Nanotechnol, TR-38080 Kayseri, Turkey; [Demir, Hilmi Volkan] Nanyang Technol Univ, LUMINOUS Ctr Excellence Semicond Lighting & Displ, Sch Phys & Math Sci, Photon Inst,Sch Elect & Elect Engn,Sch Mat Sci &, Singapore 639798, Singapore | en_US |
| gdc.description.endpage | 6465 | en_US |
| gdc.description.issue | 9 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 6459 | en_US |
| gdc.description.volume | 20 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3026555049 | |
| gdc.identifier.pmid | 32787166 | |
| gdc.identifier.wos | WOS:000571442000030 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.index.type | PubMed | |
| gdc.oaire.accesstype | BRONZE | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.downloads | 3 | |
| gdc.oaire.impulse | 38.0 | |
| gdc.oaire.influence | 4.0612202E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Planar waveguides | |
| gdc.oaire.keywords | planar waveguides | |
| gdc.oaire.keywords | liquid interface self-assembly | |
| gdc.oaire.keywords | Science::Physics::Optics and light | |
| gdc.oaire.keywords | Optical gain | |
| gdc.oaire.keywords | 540 | |
| gdc.oaire.keywords | colloidal nanoplatelets | |
| gdc.oaire.keywords | Liquid interface self-assembly | |
| gdc.oaire.keywords | 620 | |
| gdc.oaire.keywords | amplified spontaneous emission | |
| gdc.oaire.keywords | Liquid Interface Self-assembly | |
| gdc.oaire.keywords | Colloidal Nanoplatelets | |
| gdc.oaire.keywords | Colloidal nanoplatelets | |
| gdc.oaire.keywords | Amplified spontaneous emission | |
| gdc.oaire.keywords | :Physics::Optics and light [Science] | |
| gdc.oaire.keywords | optical gain | |
| gdc.oaire.popularity | 4.413218E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 0210 nano-technology | |
| gdc.oaire.views | 113 | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 3.44668906 | |
| gdc.openalex.normalizedpercentile | 0.93 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 50 | |
| gdc.plumx.crossrefcites | 32 | |
| gdc.plumx.mendeley | 69 | |
| gdc.plumx.pubmedcites | 3 | |
| gdc.plumx.scopuscites | 59 | |
| gdc.scopus.citedcount | 59 | |
| gdc.wos.citedcount | 53 | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
