Control Over Performance of Qubit-Based Sensors
| dc.contributor.author | Borisenok, S. | |
| dc.date.accessioned | 2025-09-25T10:43:11Z | |
| dc.date.available | 2025-09-25T10:43:11Z | |
| dc.date.issued | 2018 | |
| dc.description.abstract | The extreme sensitivity of quantum systems towards the external perturbations and in the same time their ability to be strongly coupled to the measured target field makes them to be stable under the environmental noise. A high quality quantum sensor can be engineered even on the platform of a single trapped qubit. There is a variety of optimal and sub-optimal algorithms for effective control over the quantum system states. Here we discuss the opportunity to improve the efficiency of the external field quantum sensor based on a single qubit via its feedback tracking. © 2020 Elsevier B.V., All rights reserved. | en_US |
| dc.identifier.doi | 10.35470/2226-4116-2018-7-3-93-95 | |
| dc.identifier.issn | 2223-7038 | |
| dc.identifier.issn | 2226-4116 | |
| dc.identifier.scopus | 2-s2.0-85061006176 | |
| dc.identifier.uri | https://doi.org/10.35470/2226-4116-2018-7-3-93-95 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/3537 | |
| dc.language.iso | en | en_US |
| dc.publisher | Institute for Problems in Mechanical Engineering, Russian Academy of Sciences dvv@msa.ipme.ru | en_US |
| dc.relation.ispartof | Cybernetics and Physics | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Feedback Tracking Algorithms | en_US |
| dc.subject | Quantum Fisher Information | en_US |
| dc.subject | Quantum Sensors | en_US |
| dc.title | Control Over Performance of Qubit-Based Sensors | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Borisenok, S. | |
| gdc.author.scopusid | 14055402800 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Borisenok] S., Department of Electrical and Electronic Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey, Feza Gürsey Center for Physics and Mathematics, Boğaziçi Üniversitesi, Bebek, Turkey | en_US |
| gdc.description.endpage | 95 | en_US |
| gdc.description.issue | 3 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.startpage | 93 | en_US |
| gdc.description.volume | 7 | en_US |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W2971796125 | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.downloads | 57 | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.86631E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Quantum sensors | |
| gdc.oaire.keywords | Feedback tracking algorithms | |
| gdc.oaire.keywords | Quantum fisher information | |
| gdc.oaire.popularity | 2.662263E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0103 physical sciences | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.views | 128 | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.39712492 | |
| gdc.openalex.normalizedpercentile | 0.7 | |
| gdc.opencitations.count | 1 | |
| gdc.plumx.scopuscites | 1 | |
| gdc.scopus.citedcount | 1 | |
| gdc.virtual.author | Borısenok, Sergey | |
| relation.isAuthorOfPublication | c6cd9cda-f721-4de6-aeec-0615863628a9 | |
| relation.isAuthorOfPublication.latestForDiscovery | c6cd9cda-f721-4de6-aeec-0615863628a9 | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication | ef13a800-4c99-4124-81e0-3e25b33c0c2b | |
| relation.isOrgUnitOfPublication | f22f14aa-23ad-40e4-bc25-b9705d4051ed | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
