Evaluation of Soft Computing Methods for Estimating Tangential Young Modulus of Intact Rock Based on Statistical Performance Indices

dc.contributor.author Koken, Ekin
dc.contributor.author Kadakci Koca, Tumay
dc.date.accessioned 2025-09-25T10:46:39Z
dc.date.available 2025-09-25T10:46:39Z
dc.date.issued 2022
dc.description Koken, Ekin/0000-0003-0178-329X; Kadakci Koca, Tumay/0000-0002-6705-9117; en_US
dc.description.abstract The tangential Young modulus (E-ti) of intact rock is a critical parameter in engineering geological design calculations and rock mass classification systems. The E-ti of various rock types has been successfully estimated by many studies based on numerous soft computing methods in recent years. However, these studies mainly involve a single analysis method or are valid for a limited number of samples. For this reason, this study aimed to compare artificial neural networks (ANN), adaptive neural fuzzy inference system (ANFIS), and Gene expression programming (GEP) methods to estimate the E-ti of various rock types based on 147 datasets collected from the published literature. As a result of the soft computing analyses, three different predictive models were proposed in this study. In the proposed prediction models, rock properties such as dry density (rho(d)), effective porosity (n(e)), P-wave velocity (V-p), and uniaxial compressive strength (UCS) were used. The estimation performance of the proposed models was examined through several performance indices such as coefficient of determination (R-2), root mean square error (RMSE), the variance accounted for (VAF), and mean absolute percent error (MAPE). As a result of statistical analyses, it was determined that the ANFIS model presents a better prediction performance (R-2 = 0.967) than the other methods in the training datasets. On the other hand, the accuracy of the ANFIS model decreased significantly in the test datasets (R-2 = 0.803). Furthermore, the GEP model presented the lowest predictive performance. Finally, considering the overall estimation accuracy of the proposed models, it was concluded that the proposed ANN model with an R-2 of 0.94 could reliably be used to estimate the E-ti of investigated rocks. en_US
dc.identifier.doi 10.1007/s10706-022-02112-x
dc.identifier.issn 0960-3182
dc.identifier.issn 1573-1529
dc.identifier.scopus 2-s2.0-85127620973
dc.identifier.uri https://doi.org/10.1007/s10706-022-02112-x
dc.identifier.uri https://hdl.handle.net/20.500.12573/3805
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Geotechnical and Geological Engineering en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Tangential Young Modulus en_US
dc.subject Intact Rock en_US
dc.subject Soft Computing en_US
dc.subject Performance Indices en_US
dc.title Evaluation of Soft Computing Methods for Estimating Tangential Young Modulus of Intact Rock Based on Statistical Performance Indices en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Koken, Ekin/0000-0003-0178-329X
gdc.author.id Kadakci Koca, Tumay/0000-0002-6705-9117
gdc.author.scopusid 57193992490
gdc.author.scopusid 56275226000
gdc.author.wosid Kadakci Koca, Tumay/Aac-2614-2019
gdc.author.wosid Köken, Ekin/Aaa-5063-2020
gdc.author.wosid Kadakci Koca, Tümay/Aac-2614-2019
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Koken, Ekin] Abdullah Gul Univ, Fac Engn, Nanotechnol Engn Dept, TR-38100 Kayseri, Turkey; [Kadakci Koca, Tumay] Mugla Sitki Kocman Univ, Fac Engn, Dept Geol Engn, TR-48000 Mugla, Turkey en_US
gdc.description.endpage 3631 en_US
gdc.description.issue 7 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 3619 en_US
gdc.description.volume 40 en_US
gdc.description.woscitationindex Emerging Sources Citation Index
gdc.description.wosquality Q3
gdc.identifier.openalex W4225807713
gdc.identifier.wos WOS:000779075700002
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 2.6991918E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 6.322785E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.96789355
gdc.openalex.normalizedpercentile 0.63
gdc.opencitations.count 5
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.virtual.author Köken, Ekin
gdc.wos.citedcount 4
relation.isAuthorOfPublication 9352c019-c944-4e23-a8e2-c73fac861cb6
relation.isAuthorOfPublication.latestForDiscovery 9352c019-c944-4e23-a8e2-c73fac861cb6
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 03adf3b0-3511-421e-b492-8fe188140fc0
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files