Soft Computing Implementations for Evaluating Los Angeles Abrasion Value of Rock Aggregates From Kütahya, Turkey

dc.contributor.author Köken, E.
dc.date.accessioned 2025-09-25T10:57:21Z
dc.date.available 2025-09-25T10:57:21Z
dc.date.issued 2024
dc.description.abstract The Los Angeles abrasion value (LAAV) of rocks is a critical mechanical aggregate property for designing road infrastructures and concrete quality. However, the determination of this critical aggregate property is labour-intensive and time-consuming and thus, in the literature, there are many predictive models to estimate the LAAV for different rock types. However, most of them are based on classical regression analyses, limiting their broader usage. In this study, several soft computing analyses are performed to develop robust predictive models for the evaluation of LAAV of rocks in the Ilıca region (Kütahya – Turkey). The main motivation for implementing soft computing analyses is that precise predictive models might be useful when exploring suitable rock types that are manufactured in crushing–screening plants. For this purpose, a comprehensive laboratory schedule was established to obtain some inputs for the evaluation of LAAV. As a result of the soft computing analyses, four robust predictive models are developed based on artificial neural networks (ANN), multiple adaptive regression spline (MARS), adaptive neuro-fuzzy inference system (ANFIS) and gene expression programming (GEP) methodologies. The performance of the proposed models is investigated by some statistical indicators such as R2 and RMSE values and scatter plots. As a result, the ANFIS-based predictive model turns out to be the best alternative to estimate the LAAV of the investigated rocks. © 2025 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.14513/actatechjaur.00731
dc.identifier.issn 2064-5228
dc.identifier.scopus 2-s2.0-85217743632
dc.identifier.uri https://doi.org/10.14513/actatechjaur.00731
dc.identifier.uri https://hdl.handle.net/20.500.12573/4652
dc.language.iso en en_US
dc.publisher Szechenyi Istvan University en_US
dc.relation.ispartof Acta Technica Jaurinensis en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Los Angeles Abrasion Value (Laav) en_US
dc.subject Predictive Model en_US
dc.subject Rock Aggregate Properties en_US
dc.subject Soft Computing en_US
dc.title Soft Computing Implementations for Evaluating Los Angeles Abrasion Value of Rock Aggregates From Kütahya, Turkey en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Köken, E.
gdc.author.scopusid 57193992490
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Köken] E., Department of Nanotechnology Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey en_US
gdc.description.endpage 44 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 36 en_US
gdc.description.volume 17 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4392240381
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.534541E-9
gdc.oaire.isgreen false
gdc.oaire.keywords predictive model
gdc.oaire.keywords Technology
gdc.oaire.keywords T
gdc.oaire.keywords rock aggregate properties
gdc.oaire.keywords los angeles abrasion value (laav)
gdc.oaire.keywords soft computing
gdc.oaire.popularity 3.860665E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0105 earth and related environmental sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 1.49949076
gdc.openalex.normalizedpercentile 0.67
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 1
gdc.plumx.mendeley 2
gdc.plumx.newscount 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 2
gdc.virtual.author Köken, Ekin
relation.isAuthorOfPublication 9352c019-c944-4e23-a8e2-c73fac861cb6
relation.isAuthorOfPublication.latestForDiscovery 9352c019-c944-4e23-a8e2-c73fac861cb6
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 03adf3b0-3511-421e-b492-8fe188140fc0
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files