Enhancing Intrusion Detection in Electric Networks Using Physics-Informed Random Forest

dc.contributor.author Bozdal, Mehmet
dc.contributor.author Savasci, Alper
dc.date.accessioned 2025-09-25T10:46:24Z
dc.date.available 2025-09-25T10:46:24Z
dc.date.issued 2024
dc.description IEEE SMC; IEEE Turkiye Section en_US
dc.description.abstract The increasing complexity of electric power networks has heightened their vulnerability to cyber-attacks, challenging traditional Intrusion Detection Systems (IDS) that rely on manually crafted rules. This paper introduces a novel approach that integrates physics-informed features and feature selection into a Random Forest (RF) model to enhance IDS performance. By deriving features such as complex power and impedance from fundamental electrical principles and applying SelectKBest for optimal feature selection, our method not only improves detection accuracy but also enhances efficiency by using fewer than half the features. Specifically, the feature-enriched RF model utilizing 55 features achieves an accuracy of 0.9667 and an F1-score of 0.9664, compared to 0.9576 and 0.9570 for the baseline RF model. This approach demonstrates the effectiveness of advanced feature engineering and selection techniques for improving the security and reliability of power network monitoring systems. © 2024 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1109/ASYU62119.2024.10757087
dc.identifier.isbn 9798350379433
dc.identifier.scopus 2-s2.0-85213371473
dc.identifier.uri https://doi.org/10.1109/ASYU62119.2024.10757087
dc.identifier.uri https://hdl.handle.net/20.500.12573/3772
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof -- 2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 -- Ankara -- 204562 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Cybersecurity en_US
dc.subject Electric Networks en_US
dc.subject Intrusion Detection Systems en_US
dc.subject Physics-Informed Features en_US
dc.subject Random Forest en_US
dc.subject Cyber Attacks en_US
dc.subject Cyber Security en_US
dc.subject Cyber-Attacks en_US
dc.subject Electric Power Networks en_US
dc.subject Features Selection en_US
dc.subject Intrusion Detection Systems en_US
dc.subject Intrusion-Detection en_US
dc.subject Physic-Informed Feature en_US
dc.subject Random Forest Modeling en_US
dc.subject Random Forests en_US
dc.subject Systems Performance en_US
dc.subject Network Intrusion en_US
dc.title Enhancing Intrusion Detection in Electric Networks Using Physics-Informed Random Forest en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57208000471
gdc.author.scopusid 57214754719
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Bozdal] Mehmet, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Savasci] Alper, Abdullah Gül Üniversitesi, Kayseri, Turkey en_US
gdc.description.endpage 5
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.wosquality N/A
gdc.identifier.openalex W4406267089
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5349236E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.4744335E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.33
gdc.opencitations.count 0
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Bozdal, Mehmet
gdc.virtual.author Savaşcı, Alper
relation.isAuthorOfPublication 7e840ecc-f832-4645-98dc-2a1679104c7d
relation.isAuthorOfPublication a7b79ba6-bfbe-46e0-b970-cbc66554ea95
relation.isAuthorOfPublication.latestForDiscovery 7e840ecc-f832-4645-98dc-2a1679104c7d
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication f22f14aa-23ad-40e4-bc25-b9705d4051ed
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files