Emotion Recognition Classification in EEG Signals Using Multivariate Synchrosqueezing Transform

dc.contributor.author Ozel, Pinar
dc.contributor.author Akan, Aydin
dc.contributor.author Yilmaz, Bulent
dc.date.accessioned 2025-09-25T10:37:15Z
dc.date.available 2025-09-25T10:37:15Z
dc.date.issued 2017
dc.description.abstract Electrophysiological data processing can take place both in time and in frequency domains as well as in the joint time-frequency domain. Short Time Fourier Transform and Wavelet Transform are commonly used time-frequency analysis methods. The limitations of these methods initiated the use of methods such as synchrosqueezing and multivariate synchrosqueezing methods. In our proposed method 88.9%, 77.8%, 80.6% accuracy rates were obtained respectively for the valence, activation and dominance parameters using and multivariate synchrosqueezing methods and support vector machines(SVM) which yields better results than most of the other methods mentioned in the literature. en_US
dc.identifier.doi 10.1109/TIPTEKNO.2017.8238096
dc.identifier.isbn 9781538606339
dc.identifier.scopus 2-s2.0-85047752991
dc.identifier.uri https://doi.org/10.1109/TIPTEKNO.2017.8238096
dc.identifier.uri https://hdl.handle.net/20.500.12573/2941
dc.language.iso tr en_US
dc.publisher IEEE en_US
dc.relation.ispartof Medical Technologies National Congress (TIPTEKNO) -- OCT 12-14, 2017 -- TRABZON, TURKEY en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Emotion Recognition en_US
dc.subject EEG en_US
dc.subject Multivariate Sychrosqueezing Transform en_US
dc.title Emotion Recognition Classification in EEG Signals Using Multivariate Synchrosqueezing Transform en_US
dc.title.alternative Emotion Recognition Classification in EEG Signals Using Multivariate Synchrosqueezing Transform en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 24544550200
gdc.author.scopusid 35617283100
gdc.author.scopusid 57189925966
gdc.author.wosid Yılmaz, Bülent/Acr-8602-2022
gdc.author.wosid Özel, Pınar/Afh-4560-2022
gdc.author.wosid Akan, Aydin/P-3068-2019
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Ozel, Pinar] Nevsehir Haci Bektas Veli Univ, Elekt Elekt Muhendisligi Bolumu, Nevsehir, Turkey; [Akan, Aydin] Izmir Katip Celebi Univ, Biyomed Muhendisligi Bolumu, Izmir, Turkey; [Yilmaz, Bulent] Abdullah Gul Univ, Elekt Elekt Muhendisligi Bolumu, Kayseri, Turkey en_US
gdc.description.endpage 4 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1 en_US
gdc.description.volume 2017-January en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W2781496988
gdc.identifier.wos WOS:000427649500070
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.downloads 0
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.7010874E-9
gdc.oaire.isgreen true
gdc.oaire.keywords emotion recognition
gdc.oaire.keywords EEG
gdc.oaire.keywords multivariate sychrosqueezing transform
gdc.oaire.popularity 2.5576417E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.views 190
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.19
gdc.opencitations.count 2
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 10
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.wos.citedcount 0
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files