Optical Gain in Ultrathin Self-Assembled Bi-Layers of Colloidal Quantum Wells Enabled by the Mode Confinement in Their High-Index Dielectric Waveguides

dc.contributor.author Foroutan-Barenji, Sina
dc.contributor.author Erdem, Onur
dc.contributor.author Gheshlaghi, Negar
dc.contributor.author Altintas, Yemliha
dc.contributor.author Demir, Hilmi Volkan
dc.date.accessioned 2025-09-25T10:54:01Z
dc.date.available 2025-09-25T10:54:01Z
dc.date.issued 2020
dc.description Foroutan Barenji, Sina/0000-0003-0623-8987; Demir, Hilmi Volkan/0000-0003-1793-112X; Erdem, Onur/0000-0003-2212-965X; en_US
dc.description.abstract This study demonstrates an ultra-thin colloidal gain medium consisting of bi-layers of colloidal quantum wells (CQWs) with a total film thickness of 14 nm integrated with high-index dielectrics. To achieve optical gain from such an ultra-thin nanocrystal film, hybrid waveguide structures partly composed of self-assembled layers of CQWs and partly high-index dielectric material are developed and shown: in asymmetric waveguide architecture employing one thin film of dielectric underneath CQWs and in the case of quasi-symmetric waveguide with a pair of dielectric films sandwiching CQWs. Numerical modeling indicates that the modal confinement factor of ultra-thin CQW films is enhanced in the presence of the adjacent dielectric layers significantly. The active slabs of these CQW monolayers in the proposed waveguide structure are constructed with great care to obtain near-unity surface coverage, which increases the density of active particles, and to reduce the surface roughness to sub-nm scale, which decreases the scattering losses. The excitation and propagation of amplified spontaneous emission (ASE) along these active waveguides are experimentally demonstrated and numerically analyzed. The findings of this work offer possibilities for the realization of ultra-thin electrically driven colloidal laser devices, providing critical advantages including single-mode lasing and high electrical conduction. en_US
dc.description.sponsorship TUBITAK [115F279, 117E713, BIDEB 2211]; TUBA; [NRF-NRFI2016-08] en_US
dc.description.sponsorship The authors acknowledge the financial support in part from NRF-NRFI2016-08 and in part from TUBITAK 115F279 and 117E713. H.V.D. gratefully acknowledges support from TUBA. O.E. acknowledges TUBITAK for the financial support through BIDEB 2211 program. The authors thank Mr. Mustafa Guler for TEM imaging of the as-synthesized CQWs and preparation of the TEM cross-sectional sample and Dr. Gokce Celik for her help on the ellipsometric measurements. en_US
dc.identifier.doi 10.1002/smll.202004304
dc.identifier.issn 1613-6810
dc.identifier.issn 1613-6829
dc.identifier.scopus 2-s2.0-85092698817
dc.identifier.uri https://doi.org/10.1002/smll.202004304
dc.identifier.uri https://hdl.handle.net/20.500.12573/4335
dc.language.iso en en_US
dc.publisher Wiley-VCH Verlag GmbH en_US
dc.relation.ispartof Small en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Colloidal Quantum Wells en_US
dc.subject Liquid–Air Interface Self-Assembly en_US
dc.subject Optical Gain en_US
dc.subject Optical Mode Confinement en_US
dc.subject Ultra-Thin Waveguides en_US
dc.title Optical Gain in Ultrathin Self-Assembled Bi-Layers of Colloidal Quantum Wells Enabled by the Mode Confinement in Their High-Index Dielectric Waveguides en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Foroutan Barenji, Sina/0000-0003-0623-8987
gdc.author.id Demir, Hilmi Volkan/0000-0003-1793-112X
gdc.author.id Erdem, Onur/0000-0003-2212-965X
gdc.author.scopusid 57219442200
gdc.author.scopusid 57211551782
gdc.author.scopusid 57190373744
gdc.author.scopusid 55796022900
gdc.author.scopusid 35552742000
gdc.author.wosid Foroutan Barenji, Sina/I-5262-2019
gdc.author.wosid Demir, Hilmi/Aav-2194-2020
gdc.author.wosid Altintas, Yemliha/Abe-7710-2021
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Foroutan-Barenji, Sina; Erdem, Onur; Gheshlaghi, Negar; Altintas, Yemliha; Demir, Hilmi Volkan] Bilkent Univ, UNAM Inst Mat Sci & Nanotechnol, Dept Phys, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey; [Altintas, Yemliha] Abdullah Gul Univ, Dept Mat Sci & Nanotechnol, TR-38080 Kayseri, Turkey; [Demir, Hilmi Volkan] Nanyang Technol Univ, LUMINOUS Ctr Excellence Semicond Lighting & Displ, Sch Elect & Elect Engn, Ctr Opt Fiber Technol,Photon Inst,Sch Phys & Math, 50 Nanyang Ave, Singapore 639798, Singapore en_US
gdc.description.issue 45 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 16 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W3093123710
gdc.identifier.pmid 33078558
gdc.identifier.wos WOS:000582144900001
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype BRONZE
gdc.oaire.diamondjournal false
gdc.oaire.downloads 0
gdc.oaire.impulse 9.0
gdc.oaire.influence 2.9182896E-9
gdc.oaire.isgreen true
gdc.oaire.keywords assembly
gdc.oaire.keywords colloidal quantum wells
gdc.oaire.keywords Optical mode confinement
gdc.oaire.keywords Optical gain
gdc.oaire.keywords Colloidal Quantum Wells
gdc.oaire.keywords Liquid–air interface self‐assembly
gdc.oaire.keywords Colloidal quantum wells
gdc.oaire.keywords liquid&#8211
gdc.oaire.keywords :Physics [Science]
gdc.oaire.keywords optical mode confinement
gdc.oaire.keywords Ultra‐thin waveguides
gdc.oaire.keywords thin waveguides
gdc.oaire.keywords Optical Gain
gdc.oaire.keywords ultra&#8208
gdc.oaire.keywords air interface self&#8208
gdc.oaire.keywords optical gain
gdc.oaire.popularity 1.19692025E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0104 chemical sciences
gdc.oaire.sciencefields 0210 nano-technology
gdc.oaire.views 2
gdc.openalex.collaboration International
gdc.openalex.fwci 0.77550504
gdc.openalex.normalizedpercentile 0.66
gdc.opencitations.count 11
gdc.plumx.crossrefcites 9
gdc.plumx.mendeley 15
gdc.plumx.patentfamcites 1
gdc.plumx.pubmedcites 1
gdc.plumx.scopuscites 12
gdc.scopus.citedcount 12
gdc.wos.citedcount 11
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files