Movie Recommendation Systems Based on Collaborative Filtering: A Case Study on Netflix

gdc.relation.journal Erciyes University Journal of Institue Of Science and Technology en_US
dc.contributor.author Sütçü, Muhammed
dc.contributor.author Erdem, Oğuzkan
dc.contributor.author Kaya, Ecem
dc.contributor.authorID 0000-0002-4634-7638 en_US
dc.contributor.authorID 0000-0002-8547-7929 en_US
dc.contributor.authorID 0000-0002-8523-9103 en_US
dc.contributor.department AGÜ, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü en_US
dc.contributor.institutionauthor Sütçü, Muhammed
dc.contributor.institutionauthor Erdem, Oğuzkan
dc.contributor.other 01. Abdullah Gül University
dc.date.accessioned 2025-09-25T11:02:14Z
dc.date.available 2025-09-25T11:02:14Z
dc.date.issued 2021 en_US
dc.description.abstract User ratings on items like movies, songs, and shopping products are used_x000D_ by Recommendation Systems (RS) to predict user preferences for items that have_x000D_ not been rated. RS has been utilized to give suggestions to users in various domains_x000D_ and one of the applications of RS is movie recommendation. In this domain, three_x000D_ general algorithms are applied; Collaborative Filtering that provides prediction_x000D_ based on similarities among users, Content-Based Filtering that is fed from the_x000D_ relation between item-user pairs and Hybrid Filtering one which combines these_x000D_ two algorithms. In this paper, we discuss which methods are more efficient in movie_x000D_ recommendation in the framework of Collaborative Filtering. In our analysis, we use_x000D_ Netflix Prize dataset and compare well-known Collaborative Filtering methods_x000D_ which are Singular Value Decomposition, Singular Value Decomposition++, KNearest Neighbour and Co-Clustering. The error of each method is calculated by_x000D_ using Root Mean Square Error (RMSE). Finally, we conclude that K-Nearest_x000D_ Neighbour method is more successful in our dataset. en_US
dc.identifier.uri https://hdl.handle.net/20.500.12573/5054
dc.language.iso eng en_US
dc.publisher Erciyes Üniversitesi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Movie Recommendation en_US
dc.subject Recommendation Systems en_US
dc.subject Collaborative Filtering en_US
dc.subject Netflix Prize en_US
dc.title Movie Recommendation Systems Based on Collaborative Filtering: A Case Study on Netflix en_US
dc.title.alternative İşbirlikçi Filtreleme Temelinde Film Öneri Sistemleri: Netflix Üzerinde Bir Vaka Çalışması en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Sütçü, Muhammed
gdc.description.endpage 376 en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 367 en_US
gdc.description.volume 37 en_US
relation.isAuthorOfPublication 346bb5cc-f5cb-4f40-bd6f-995436a96d63
relation.isAuthorOfPublication.latestForDiscovery 346bb5cc-f5cb-4f40-bd6f-995436a96d63
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files