Exploring Microbiome Signatures in Autism Spectrum Disorder via Grouping-Scoring Based Machine Learning

dc.contributor.author Temiz, Mustafa
dc.contributor.author Ersoz, Nur Sebnem
dc.contributor.author Yousef, Malik
dc.contributor.author Bakir-Gungor, Burcu
dc.date.accessioned 2025-10-20T16:27:58Z
dc.date.available 2025-10-20T16:27:58Z
dc.date.issued 2025
dc.description.abstract The rapid increase in omic data production increased the importance of machine learning (ML) methods to analze these data. In particular, the use of metagenomic data in the diagnosis, prognosis and treatment of diseases is becoming widespread. Autism Spectrum Disorder (ASD) is a neurodevelopmental disease that occurs in early childhood and continues lifelong. The aim of this study is to increase ML performance, reduce computational costs and achieve successful classification performance using a small number of metagenomic features. In addition, disease prediction is performed; ASD associated biomarkers are determined using the microBiomeGSM on metagenomic data. Classification is performed at three different taxonomic levels (genus, family and order) using the relative abundance values of species. The best performance metric (0.95 AUC) was obtained at the order taxonomic level using an average of 416 features with microBiomeGSM. The identified ASD-related taxonomic species are presented. en_US
dc.identifier.doi 10.1109/SIU66497.2025.11112333
dc.identifier.isbn 9798331566562
dc.identifier.isbn 9798331566555
dc.identifier.issn 2165-0608
dc.identifier.scopus 2-s2.0-105015560926
dc.identifier.uri https://doi.org/10.1109/SIU66497.2025.11112333
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.ispartof 33rd Conference on Signal Processing and Communications Applications-SIU-Annual -- Jun 25-28, 2025 -- Istanbul, Turkiye en_US
dc.relation.ispartofseries Signal Processing and Communications Applications Conference
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Autism Spectrum Disorder en_US
dc.subject Metagenomics en_US
dc.subject Biomarker en_US
dc.subject Machine Learning en_US
dc.subject Disease Prediction en_US
dc.title Exploring Microbiome Signatures in Autism Spectrum Disorder via Grouping-Scoring Based Machine Learning en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.wosid Temiz, Mustafa/Kzu-4768-2024
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül Üniversitesi en_US
gdc.description.departmenttemp [Temiz, Mustafa] Cumhuriyet Univ, Dept Management Informat Syst, Sivas, Turkiye; [Ersoz, Nur Sebnem] Abdullah Gul Univ, Dept Bioengn, Kayseri, Turkiye; [Yousef, Malik] Zefat Acad Coll, Dept Informat Syst, Safed, Israel; [Bakir-Gungor, Burcu] Abdullah Gul Univ, Dept Comp Engn, Kayseri, Turkiye en_US
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W7084159282
gdc.identifier.wos WOS:001575462500307
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5349236E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.8669784E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.73
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Güngör, Burcu
gdc.wos.citedcount 0
relation.isAuthorOfPublication e17be1f8-1c9a-45f2-bf0d-f8b348d2dba0
relation.isAuthorOfPublication.latestForDiscovery e17be1f8-1c9a-45f2-bf0d-f8b348d2dba0
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files