Exploring Microbiome Signatures in Autism Spectrum Disorder via Grouping-Scoring Based Machine Learning
| dc.contributor.author | Temiz, Mustafa | |
| dc.contributor.author | Ersoz, Nur Sebnem | |
| dc.contributor.author | Yousef, Malik | |
| dc.contributor.author | Bakir-Gungor, Burcu | |
| dc.date.accessioned | 2025-10-20T16:27:58Z | |
| dc.date.available | 2025-10-20T16:27:58Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | The rapid increase in omic data production increased the importance of machine learning (ML) methods to analze these data. In particular, the use of metagenomic data in the diagnosis, prognosis and treatment of diseases is becoming widespread. Autism Spectrum Disorder (ASD) is a neurodevelopmental disease that occurs in early childhood and continues lifelong. The aim of this study is to increase ML performance, reduce computational costs and achieve successful classification performance using a small number of metagenomic features. In addition, disease prediction is performed; ASD associated biomarkers are determined using the microBiomeGSM on metagenomic data. Classification is performed at three different taxonomic levels (genus, family and order) using the relative abundance values of species. The best performance metric (0.95 AUC) was obtained at the order taxonomic level using an average of 416 features with microBiomeGSM. The identified ASD-related taxonomic species are presented. | en_US |
| dc.identifier.doi | 10.1109/SIU66497.2025.11112333 | |
| dc.identifier.isbn | 9798331566562 | |
| dc.identifier.isbn | 9798331566555 | |
| dc.identifier.issn | 2165-0608 | |
| dc.identifier.scopus | 2-s2.0-105015560926 | |
| dc.identifier.uri | https://doi.org/10.1109/SIU66497.2025.11112333 | |
| dc.language.iso | en | en_US |
| dc.publisher | IEEE | en_US |
| dc.relation.ispartof | 33rd Conference on Signal Processing and Communications Applications-SIU-Annual -- Jun 25-28, 2025 -- Istanbul, Turkiye | en_US |
| dc.relation.ispartofseries | Signal Processing and Communications Applications Conference | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Autism Spectrum Disorder | en_US |
| dc.subject | Metagenomics | en_US |
| dc.subject | Biomarker | en_US |
| dc.subject | Machine Learning | en_US |
| dc.subject | Disease Prediction | en_US |
| dc.title | Exploring Microbiome Signatures in Autism Spectrum Disorder via Grouping-Scoring Based Machine Learning | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.wosid | Temiz, Mustafa/Kzu-4768-2024 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül Üniversitesi | en_US |
| gdc.description.departmenttemp | [Temiz, Mustafa] Cumhuriyet Univ, Dept Management Informat Syst, Sivas, Turkiye; [Ersoz, Nur Sebnem] Abdullah Gul Univ, Dept Bioengn, Kayseri, Turkiye; [Yousef, Malik] Zefat Acad Coll, Dept Informat Syst, Safed, Israel; [Bakir-Gungor, Burcu] Abdullah Gul Univ, Dept Comp Engn, Kayseri, Turkiye | en_US |
| gdc.description.endpage | 4 | |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 1 | |
| gdc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W7084159282 | |
| gdc.identifier.wos | WOS:001575462500307 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.5349236E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 2.8669784E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.73 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.scopus.citedcount | 0 | |
| gdc.virtual.author | Güngör, Burcu | |
| gdc.wos.citedcount | 0 | |
| relation.isAuthorOfPublication | e17be1f8-1c9a-45f2-bf0d-f8b348d2dba0 | |
| relation.isAuthorOfPublication.latestForDiscovery | e17be1f8-1c9a-45f2-bf0d-f8b348d2dba0 | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication | 52f507ab-f278-4a1f-824c-44da2a86bd51 | |
| relation.isOrgUnitOfPublication | ef13a800-4c99-4124-81e0-3e25b33c0c2b | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
