Re-Exploring the Kayseri Culture Route by Using Deep Learning for Cultural Heritage Image Classification Cultural Heritage Image Classification by Using Deep Learning: Kayseri Culture Route
| dc.contributor.author | Kevseroğlu, Ozlem | |
| dc.contributor.author | Kurban, Rifat | |
| dc.date.accessioned | 2025-09-25T10:56:24Z | |
| dc.date.available | 2025-09-25T10:56:24Z | |
| dc.date.issued | 2024 | |
| dc.description | Tokat Gaziosmanpasa Universitesi | en_US |
| dc.description.abstract | The categorization of images captured during the documentation of architectural structures is a crucial aspect of preserving cultural heritage in digital form. Dealing with a large volume of images makes this categorization process laborious and time-consuming, often leading to errors. Introducing automatic techniques to aid in sorting would streamline this process, enhancing the efficiency of digital documentation. Proper classification of these images facilitates improved organization and more effective searches using specific terms, thereby aiding in the analysis and interpretation of the heritage asset. This study primarily focuses on applying deep learning techniques, specifically SqueezeNet convolutional neural networks (CNNs), for classifying images of architectural heritage. The effectiveness of training these networks from scratch versus fine-tuning pre-existing models is examined. In this study, we concentrate on identifying significant elements within images of buildings with architectural heritage significance of Kayseri Culture Route. Since no suitable datasets for network training were found, a new dataset was created. Transfer learning enables the use of pre-trained convolutional neural networks to specific image classification tasks. In the experiments, 99.8% of classification accuracy have been achieved by using SqueezeNet, suggesting that the implementation of the technique can substantially enhance the digital documentation of architectural heritage. © 2024 Elsevier B.V., All rights reserved. | en_US |
| dc.identifier.doi | 10.1145/3660853.3660913 | |
| dc.identifier.isbn | 9798400703638 | |
| dc.identifier.isbn | 9798400706714 | |
| dc.identifier.isbn | 9798400716928 | |
| dc.identifier.scopus | 2-s2.0-85197498673 | |
| dc.identifier.uri | https://doi.org/10.1145/3660853.3660913 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/4538 | |
| dc.language.iso | en | en_US |
| dc.publisher | Association for Computing Machinery | en_US |
| dc.relation.ispartof | -- 2024 Cognitive Models and Artificial Intelligence Conference, AICCONF 2024 -- Istanbul -- 200487 | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Convolutional Neural Networks | en_US |
| dc.subject | Cultural Heritage | en_US |
| dc.subject | Deep Learning | en_US |
| dc.subject | Image Classification | en_US |
| dc.subject | Squeezenet | en_US |
| dc.subject | Architecture | en_US |
| dc.subject | Convolution | en_US |
| dc.subject | Convolutional Neural Networks | en_US |
| dc.subject | Deep Learning | en_US |
| dc.subject | Historic Preservation | en_US |
| dc.subject | Image Enhancement | en_US |
| dc.subject | Learning Systems | en_US |
| dc.subject | Transfer Learning | en_US |
| dc.subject | Architectural Heritage | en_US |
| dc.subject | Architectural Structure | en_US |
| dc.subject | Convolutional Neural Network | en_US |
| dc.subject | Cultural Heritages | en_US |
| dc.subject | Digital Documentation | en_US |
| dc.subject | Digital Forms | en_US |
| dc.subject | Images Classification | en_US |
| dc.subject | Large Volumes | en_US |
| dc.subject | Squeezenet | en_US |
| dc.subject | Image Classification | en_US |
| dc.title | Re-Exploring the Kayseri Culture Route by Using Deep Learning for Cultural Heritage Image Classification Cultural Heritage Image Classification by Using Deep Learning: Kayseri Culture Route | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 56545784200 | |
| gdc.author.scopusid | 24729361200 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::conference output | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Kevseroğlu] Ozlem, Department of Architecture, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Kurban] Rifat, Department of Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey | en_US |
| gdc.description.endpage | 201 | en_US |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 196 | en_US |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W4399933032 | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | HYBRID | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.4895952E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Image Classification | |
| gdc.oaire.keywords | Convolutional neural networks | |
| gdc.oaire.keywords | Deep learning | |
| gdc.oaire.keywords | SqueezeNet | |
| gdc.oaire.keywords | Cultural Heritage | |
| gdc.oaire.popularity | 2.3737945E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.09 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 11 | |
| gdc.plumx.scopuscites | 1 | |
| gdc.scopus.citedcount | 1 | |
| gdc.virtual.author | Kurban, Rifat | |
| gdc.virtual.author | Kevseroğlu Kurban, Özlem | |
| relation.isAuthorOfPublication | f55f9796-680f-4dd5-9c98-e43d0ffee812 | |
| relation.isAuthorOfPublication | 7fb46a26-de8b-4b41-ad43-75647860c654 | |
| relation.isAuthorOfPublication.latestForDiscovery | f55f9796-680f-4dd5-9c98-e43d0ffee812 | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication | 52f507ab-f278-4a1f-824c-44da2a86bd51 | |
| relation.isOrgUnitOfPublication | ef13a800-4c99-4124-81e0-3e25b33c0c2b | |
| relation.isOrgUnitOfPublication | 2ab4f42f-5676-47e3-bb31-c00be0758f8b | |
| relation.isOrgUnitOfPublication | 41a7d786-5b6d-4171-908b-e188c2ec347c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
