Re-Exploring the Kayseri Culture Route by Using Deep Learning for Cultural Heritage Image Classification Cultural Heritage Image Classification by Using Deep Learning: Kayseri Culture Route

dc.contributor.author Kevseroğlu, Ozlem
dc.contributor.author Kurban, Rifat
dc.date.accessioned 2025-09-25T10:56:24Z
dc.date.available 2025-09-25T10:56:24Z
dc.date.issued 2024
dc.description Tokat Gaziosmanpasa Universitesi en_US
dc.description.abstract The categorization of images captured during the documentation of architectural structures is a crucial aspect of preserving cultural heritage in digital form. Dealing with a large volume of images makes this categorization process laborious and time-consuming, often leading to errors. Introducing automatic techniques to aid in sorting would streamline this process, enhancing the efficiency of digital documentation. Proper classification of these images facilitates improved organization and more effective searches using specific terms, thereby aiding in the analysis and interpretation of the heritage asset. This study primarily focuses on applying deep learning techniques, specifically SqueezeNet convolutional neural networks (CNNs), for classifying images of architectural heritage. The effectiveness of training these networks from scratch versus fine-tuning pre-existing models is examined. In this study, we concentrate on identifying significant elements within images of buildings with architectural heritage significance of Kayseri Culture Route. Since no suitable datasets for network training were found, a new dataset was created. Transfer learning enables the use of pre-trained convolutional neural networks to specific image classification tasks. In the experiments, 99.8% of classification accuracy have been achieved by using SqueezeNet, suggesting that the implementation of the technique can substantially enhance the digital documentation of architectural heritage. © 2024 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1145/3660853.3660913
dc.identifier.isbn 9798400703638
dc.identifier.isbn 9798400706714
dc.identifier.isbn 9798400716928
dc.identifier.scopus 2-s2.0-85197498673
dc.identifier.uri https://doi.org/10.1145/3660853.3660913
dc.identifier.uri https://hdl.handle.net/20.500.12573/4538
dc.language.iso en en_US
dc.publisher Association for Computing Machinery en_US
dc.relation.ispartof -- 2024 Cognitive Models and Artificial Intelligence Conference, AICCONF 2024 -- Istanbul -- 200487 en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Convolutional Neural Networks en_US
dc.subject Cultural Heritage en_US
dc.subject Deep Learning en_US
dc.subject Image Classification en_US
dc.subject Squeezenet en_US
dc.subject Architecture en_US
dc.subject Convolution en_US
dc.subject Convolutional Neural Networks en_US
dc.subject Deep Learning en_US
dc.subject Historic Preservation en_US
dc.subject Image Enhancement en_US
dc.subject Learning Systems en_US
dc.subject Transfer Learning en_US
dc.subject Architectural Heritage en_US
dc.subject Architectural Structure en_US
dc.subject Convolutional Neural Network en_US
dc.subject Cultural Heritages en_US
dc.subject Digital Documentation en_US
dc.subject Digital Forms en_US
dc.subject Images Classification en_US
dc.subject Large Volumes en_US
dc.subject Squeezenet en_US
dc.subject Image Classification en_US
dc.title Re-Exploring the Kayseri Culture Route by Using Deep Learning for Cultural Heritage Image Classification Cultural Heritage Image Classification by Using Deep Learning: Kayseri Culture Route en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 56545784200
gdc.author.scopusid 24729361200
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Kevseroğlu] Ozlem, Department of Architecture, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Kurban] Rifat, Department of Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey en_US
gdc.description.endpage 201 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 196 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4399933032
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Image Classification
gdc.oaire.keywords Convolutional neural networks
gdc.oaire.keywords Deep learning
gdc.oaire.keywords SqueezeNet
gdc.oaire.keywords Cultural Heritage
gdc.oaire.popularity 2.3737945E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.09
gdc.opencitations.count 0
gdc.plumx.mendeley 11
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Kurban, Rifat
gdc.virtual.author Kevseroğlu Kurban, Özlem
relation.isAuthorOfPublication f55f9796-680f-4dd5-9c98-e43d0ffee812
relation.isAuthorOfPublication 7fb46a26-de8b-4b41-ad43-75647860c654
relation.isAuthorOfPublication.latestForDiscovery f55f9796-680f-4dd5-9c98-e43d0ffee812
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication 2ab4f42f-5676-47e3-bb31-c00be0758f8b
relation.isOrgUnitOfPublication 41a7d786-5b6d-4171-908b-e188c2ec347c
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files