A Review of Mammographic Region of Interest Classification

dc.contributor.author Yengec Tasdemir, Sena B.
dc.contributor.author Tasdemir, Kasim
dc.contributor.author Aydin, Zafer
dc.date.accessioned 2025-09-25T10:39:26Z
dc.date.available 2025-09-25T10:39:26Z
dc.date.issued 2020
dc.description Tasdemir, Kasim/0000-0003-4542-2728 en_US
dc.description.abstract Early detection of breast cancer is important and highly valuable in clinical practice. X-ray mammography is broadly used for prescreening the breast and is also attractive due to its noninvasive nature. However, experts can misdiagnose a significant proportion of the cases, which may either cause redundant examinations or cancer. In order to reduce false positive and negative rates of mammography screening, computer-aided breast cancer detection has been studied for more than 30 years and many methods have been proposed by the researchers. In this review, region of interest (ROI) classification methods, which operate on a predefined or segmented ROIs with a focus on mass classification are surveyed. A total of 72 high quality journal and conference papers are selected from the Web of Science (WOS) database that meet several inclusion criteria. A comparative analysis is provided based on ROI extraction methods, data sets and machine learning techniques employed, the prediction accuracies, and usage frequency statistics. Based on the performances obtained on publicly available data sets, the ROI classification problem from mammogram images can be considered as approaching to be solved. Nonetheless, it can still be used as complementary information in breast cancer detection from the whole mammograms, which has room for improvement. This article is categorized under: Application Areas > Science and Technology Technologies > Machine Learning Technologies > Classification en_US
dc.description.sponsorship Turkish Higher Education Council's 100/2000 PhD fellowship program en_US
dc.description.sponsorship Sena B. Yengec Tasdemir, is supported by the Turkish Higher Education Council's 100/2000 PhD fellowship program. en_US
dc.identifier.doi 10.1002/widm.1357
dc.identifier.issn 1942-4787
dc.identifier.issn 1942-4795
dc.identifier.scopus 2-s2.0-85079699535
dc.identifier.uri https://doi.org/10.1002/widm.1357
dc.identifier.uri https://hdl.handle.net/20.500.12573/3142
dc.language.iso en en_US
dc.publisher Wiley Periodicals, inc en_US
dc.relation.ispartof Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Breast Cancer en_US
dc.subject Computer-Aided Diagnosis en_US
dc.subject Deep Learning en_US
dc.subject Mammogram en_US
dc.subject Region of Interest en_US
dc.title A Review of Mammographic Region of Interest Classification en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Tasdemir, Kasim/0000-0003-4542-2728
gdc.author.scopusid 57207104464
gdc.author.scopusid 26538758900
gdc.author.scopusid 7003852510
gdc.author.wosid Tasdemir, Kasim/Aga-4286-2022
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Yengec Tasdemir, Sena B.; Tasdemir, Kasim; Aydin, Zafer] Abdullah Gul Univ, Dept Elect & Comp Engn, TR-38080 Kayseri, Turkey en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 10 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W3008024764
gdc.identifier.wos WOS:000514010800001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 9.0
gdc.oaire.influence 3.0099885E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 9.514785E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 1.90917413
gdc.openalex.normalizedpercentile 0.87
gdc.opencitations.count 10
gdc.plumx.crossrefcites 6
gdc.plumx.mendeley 37
gdc.plumx.scopuscites 14
gdc.scopus.citedcount 14
gdc.virtual.author Aydın, Zafer
gdc.wos.citedcount 15
relation.isAuthorOfPublication a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isAuthorOfPublication.latestForDiscovery a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files