Neuro-Fuzzy Model Predictive Energy Management for Grid Connected Microgrids

dc.contributor.author Ulutas, Ahsen
dc.contributor.author Altas, Ismail Hakki
dc.contributor.author Onen, Ahmet
dc.contributor.author Ustun, Taha Selim
dc.date.accessioned 2025-09-25T10:53:09Z
dc.date.available 2025-09-25T10:53:09Z
dc.date.issued 2020
dc.description Onen, Ahmet/0000-0001-7086-5112; Ustun, Taha Selim/0000-0002-2413-8421; Ulutas, Ahsen/0000-0002-7715-3246 en_US
dc.description.abstract With constant population growth and the rise in technology use, the demand for electrical energy has increased significantly. Increasing fossil-fuel-based electricity generation has serious impacts on environment. As a result, interest in renewable resources has risen, as they are environmentally friendly and may prove to be economical in the long run. However, the intermittent character of renewable energy sources is a major disadvantage. It is important to integrate them with the rest of the grid so that their benefits can be reaped while their negative impacts can be mitigated. In this article, an energy management algorithm is recommended for a grid-connected microgrid consisting of loads, a photovoltaic (PV) system and a battery for efficient use of energy. A model predictive control-inspired approach for energy management is developed using the PV power and consumption estimation obtained from daylight solar irradiation and temperature estimation of the same area. An energy management algorithm, which is based on a neuro-fuzzy inference system, is designed by determining the possible operating states of the system. The proposed system is compared with a rule-based control strategy. Results show that the developed control algorithm ensures that microgrid is supplied with reliable energy while the renewable energy use is maximized. en_US
dc.identifier.doi 10.3390/electronics9060900
dc.identifier.issn 2079-9292
dc.identifier.scopus 2-s2.0-85085879198
dc.identifier.uri https://doi.org/10.3390/electronics9060900
dc.identifier.uri https://hdl.handle.net/20.500.12573/4274
dc.language.iso en en_US
dc.publisher MDPI en_US
dc.relation.ispartof Electronics en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Artificial Neural Network en_US
dc.subject Energy Management System (EMS) en_US
dc.subject Estimation en_US
dc.subject Microgrid en_US
dc.subject Model Predictive Control-Inspired (MPC-Inspired) en_US
dc.subject Neuro-Fuzzy Algorithm en_US
dc.title Neuro-Fuzzy Model Predictive Energy Management for Grid Connected Microgrids en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Onen, Ahmet/0000-0001-7086-5112
gdc.author.id Ustun, Taha Selim/0000-0002-2413-8421
gdc.author.id Ulutas, Ahsen/0000-0002-7715-3246
gdc.author.scopusid 57205427963
gdc.author.scopusid 6603812262
gdc.author.scopusid 55511777700
gdc.author.scopusid 43761679200
gdc.author.wosid Onen, Ahmet/Ial-8894-2023
gdc.author.wosid Altaş, İsmail/Aat-2075-2020
gdc.author.wosid Ustun, Taha/M-5481-2018
gdc.author.wosid Ulutaş, Ahsen/Aes-6407-2022
gdc.author.wosid Ulutas, Ahsen/Aes-6407-2022
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Ulutas, Ahsen; Onen, Ahmet] Abdullah Gul Univ, Dept Elect & Elect Engn, TR-38080 Kayseri, Turkey; [Altas, Ismail Hakki] Karadeniz Tech Univ, Dept Elect & Elect Engn, TR-61080 Trabzon, Turkey; [Ustun, Taha Selim] AIST, FREA, 2-2-9 Machiikedai, Koriyama, Fukushima 9630298, Japan en_US
gdc.description.issue 6 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 900
gdc.description.volume 9 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W3030406608
gdc.identifier.wos WOS:000554945800001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.downloads 98
gdc.oaire.impulse 19.0
gdc.oaire.influence 5.265859E-9
gdc.oaire.isgreen true
gdc.oaire.keywords microgrid
gdc.oaire.keywords estimation
gdc.oaire.keywords model predictive control-inspired (MPC-inspired)
gdc.oaire.keywords energy management system (EMS)
gdc.oaire.keywords neuro-fuzzy algorithm
gdc.oaire.keywords artificial neural network
gdc.oaire.popularity 4.98371E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.views 123
gdc.openalex.collaboration National
gdc.openalex.fwci 3.66369883
gdc.openalex.normalizedpercentile 0.93
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 52
gdc.plumx.crossrefcites 62
gdc.plumx.mendeley 36
gdc.plumx.scopuscites 64
gdc.scopus.citedcount 64
gdc.virtual.author Önen, Ahmet
gdc.wos.citedcount 53
relation.isAuthorOfPublication 0af75b8c-6d1f-435f-8af7-6b752056503e
relation.isAuthorOfPublication.latestForDiscovery 0af75b8c-6d1f-435f-8af7-6b752056503e
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files