ROSE: A Novel Approach for Protein Secondary Structure Prediction

dc.contributor.author Görmez, Yasin
dc.contributor.author Aydin, Zafer
dc.date.accessioned 2025-09-25T10:56:03Z
dc.date.available 2025-09-25T10:56:03Z
dc.date.issued 2021
dc.description.abstract Three-dimensional structure of protein gives important information about protein’s function. Since it is time-consuming and costly to find the structure of protein by experimental methods, estimation of three-dimensional structures of proteins through computational methods has been an efficient alternative. One of the most important steps for the 3-D protein structure prediction is protein secondary structure prediction. Proteins which contain different number and sequences of amino acids may have similar structures. Thus, extracting appropriate input features has crucial importance for secondary structure prediction. In this study, a novel model, ROSE, is proposed for secondary structure prediction that obtains probability distributions as a feature vector by using two position specific scoring matrices obtained by PSIBLAST and HHblits. ROSE is a two-stage hybrid classifier that uses a one-dimensional bi-directional recurrent neural network at the first stage and a support vector machine at the second stage. It is also combined with DSPRED method, which employs dynamic Bayesian networks and a support vector machine. ROSE obtained comparable results to DSPRED in cross-validation experiments performed on a difficult benchmark and can be used as an alternative to protein secondary structure prediction. © 2021 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1007/978-3-030-79357-9_45
dc.identifier.issn 2367-4512
dc.identifier.issn 2367-4520
dc.identifier.scopus 2-s2.0-85109940847
dc.identifier.uri https://doi.org/10.1007/978-3-030-79357-9_45
dc.identifier.uri https://hdl.handle.net/20.500.12573/4525
dc.language.iso en en_US
dc.publisher Springer Science and Business Media Deutschland GmbH en_US
dc.relation.ispartof Lecture Notes on Data Engineering and Communications Technologies en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Deep Learning en_US
dc.subject Machine Learning en_US
dc.subject Protein Secondary Structure Prediction en_US
dc.subject Protein Structure Prediction en_US
dc.subject Recurrent Neural Network en_US
dc.subject Bayesian Networks en_US
dc.subject Forecasting en_US
dc.subject One Dimensional en_US
dc.subject Probability Distributions en_US
dc.subject Recurrent Neural Networks en_US
dc.subject Support Vector Machines en_US
dc.subject Dynamic Bayesian Networks en_US
dc.subject Experimental Methods en_US
dc.subject Hybrid Classifier en_US
dc.subject Protein Secondary-Structure Prediction en_US
dc.subject Protein Structure Prediction en_US
dc.subject Secondary Structure Prediction en_US
dc.subject Three-Dimensional Structure en_US
dc.subject Three-Dimensional Structure of Protein en_US
dc.subject Proteins en_US
dc.title ROSE: A Novel Approach for Protein Secondary Structure Prediction en_US
dc.type Book Part en_US
dspace.entity.type Publication
gdc.author.scopusid 57195222392
gdc.author.scopusid 7003852510
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::book::book part
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Görmez] Yasin, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Aydin] Zafer, Abdullah Gül Üniversitesi, Kayseri, Turkey en_US
gdc.description.endpage 464 en_US
gdc.description.publicationcategory Kitap Bölümü - Uluslararası en_US
gdc.description.scopusquality Q4
gdc.description.startpage 455 en_US
gdc.description.volume 76 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W3178532979
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.5536655E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.3092985E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 2.17652337
gdc.openalex.normalizedpercentile 0.82
gdc.opencitations.count 0
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 3
gdc.virtual.author Aydın, Zafer
relation.isAuthorOfPublication a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isAuthorOfPublication.latestForDiscovery a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files