Existence of Multiple Positive Solutions for P-Laplacian Multipoint Boundary Value Problems on Time Scales

dc.contributor.author Dogan, Abdulkadir
dc.date.accessioned 2025-09-25T10:46:51Z
dc.date.available 2025-09-25T10:46:51Z
dc.date.issued 2013
dc.description.abstract In this paper, we consider p-Laplacian multipoint boundary value problems on time scales. By using a generalization of the Leggett-Williams fixed point theorem due to Bai and Ge, we prove that a boundary value problem has at least three positive solutions. Moreover, we study existence of positive solutions of a multipoint boundary value problem for an increasing homeomorphism and homomorphism on time scales. By using fixed point index theory, sufficient conditions for the existence of at least two positive solutions are provided. Examples are given to illustrate the results. MSC: 34B15, 34B16, 34B18, 39A10. en_US
dc.description.sponsorship Abdullah Gul University Foundation of Turkey [5] en_US
dc.description.sponsorship The author is very grateful to Professor Ravi P Agarwal and Donal O'Regan for their important comments and suggestions in improving this manuscript. The project is supported by Abdullah Gul University Foundation of Turkey (Project No. 5). en_US
dc.identifier.doi 10.1186/1687-1847-2013-238
dc.identifier.issn 1687-1847
dc.identifier.scopus 2-s2.0-84893368697
dc.identifier.uri https://doi.org/10.1186/1687-1847-2013-238
dc.identifier.uri https://hdl.handle.net/20.500.12573/3817
dc.language.iso en en_US
dc.publisher Springeropen en_US
dc.relation.ispartof Advances in Difference Equations
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Time Scales en_US
dc.subject Boundary Value Problem en_US
dc.subject P-Laplacian en_US
dc.subject Positive Solutions en_US
dc.subject Fixed Point Theorem en_US
dc.title Existence of Multiple Positive Solutions for P-Laplacian Multipoint Boundary Value Problems on Time Scales en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Dogan, Abdulkadir
gdc.author.scopusid 7101805539
gdc.author.wosid Doğan, Abdülkadir/A-9812-2013
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp Abdullah Gul Univ, Dept Appl Math, Fac Comp Sci, TR-38039 Kayseri, Turkey en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.volume 2013
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality N/A
gdc.identifier.openalex W2099432931
gdc.identifier.wos WOS:000327086300001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.downloads 178
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.7489164E-9
gdc.oaire.isgreen true
gdc.oaire.keywords positive solutions
gdc.oaire.keywords Algebra and Number Theory
gdc.oaire.keywords time scales
gdc.oaire.keywords boundary value problem
gdc.oaire.keywords Applied Mathematics
gdc.oaire.keywords p-Laplacian
gdc.oaire.keywords fixed point theorem
gdc.oaire.keywords Analysis
gdc.oaire.keywords Singular nonlinear boundary value problems for ordinary differential equations
gdc.oaire.keywords Positive solutions to nonlinear boundary value problems for ordinary differential equations
gdc.oaire.keywords \(p\)-Laplacian
gdc.oaire.keywords Dynamic equations on time scales or measure chains
gdc.oaire.keywords Additive difference equations
gdc.oaire.popularity 7.181881E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.views 156
gdc.openalex.collaboration National
gdc.openalex.fwci 1.80133688
gdc.openalex.normalizedpercentile 0.86
gdc.opencitations.count 3
gdc.plumx.crossrefcites 3
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 13
gdc.scopus.citedcount 13
gdc.virtual.author Doğan, Abdülkadir
gdc.wos.citedcount 17
relation.isAuthorOfPublication f79a54b3-64ad-46e8-adfc-228e8ca25a07
relation.isAuthorOfPublication.latestForDiscovery f79a54b3-64ad-46e8-adfc-228e8ca25a07
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 26c938e5-738e-41bf-8231-8de593870236
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files