Tailoring Quantum Dot Shell Thickness and Polyethylenimine Interlayers for Optimization of Inverted Quantum Dot Light-Emitting Diodes
No Thumbnail Available
Date
2024
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Open Access Color
GOLD
Green Open Access
Yes
OpenAIRE Downloads
7
OpenAIRE Views
157
Publicly Funded
No
Abstract
Quantum dot light-emitting diodes (QLEDs) hold great promise for next-generation display applications owing to their exceptional optical properties and versatile tunability. In this study, we investigate the effects of quantum dot (QD) shell thickness, polyethylenimine (PEI) concentration, and PEI layer position on the performance of inverted QLED devices. Two types of alloyed-core/shell QDs with varying shell thicknesses were synthesized using a one-pot method with mean particle sizes of 8.0 +/- 0.9 nm and 10.3 +/- 1.3 nm for thin- and thick-shelled QDs, respectively. Thick-shelled QDs exhibited a higher photoluminescence quantum yield (PLQY) and a narrower emission linewidth compared to their thin-shelled counterparts. Next, QLEDs employing these QDs were fabricated. The incorporation of PEI layers on either side of the QD emissive layer significantly enhanced device performance. Using PEI on the hole transport side resulted in greater improvement than on the electron injection side. Sandwiching the QD layer between two PEI layers led to the best performance, with a maximum external quantum efficiency (EQE) of 17% and a peak luminance of 91,174 cd/m2 achieved using an optimized PEI concentration of 0.025 wt% on both electron injection and hole injection sides. This study highlights the critical role of QD shell engineering and interfacial modification in achieving high-performance QLEDs for display applications.
Description
Ulku, Alper/0000-0002-3033-9406; Mutlugun, Evren/0000-0003-3715-5594; Yazici, Ahmet Faruk/0000-0003-2747-7856; Kacar, Rifat/0000-0002-2762-8661; Karabel Ocal, Sema/0000-0002-0265-541X;
Keywords
Inverted, Quantum Dot Light-Emitting Diode, PEI, Interlayer, inverted, interlayer, quantum dot light-emitting diode, Applied optics. Photonics, PEI, TA1501-1820
Turkish CoHE Thesis Center URL
Fields of Science
02 engineering and technology, 0210 nano-technology, 01 natural sciences, 0104 chemical sciences
Citation
WoS Q
Q3
Scopus Q
Q3

OpenCitations Citation Count
N/A
Source
Photonics
Volume
11
Issue
7
Start Page
651
End Page
PlumX Metrics
Citations
Scopus : 1
Captures
Mendeley Readers : 1
SCOPUS™ Citations
1
checked on Feb 03, 2026
Web of Science™ Citations
1
checked on Feb 03, 2026
Page Views
6
checked on Feb 03, 2026
Google Scholar™


