Development of Comprehensive Predictive Models for Evaluating Böhme Abrasion Value (BAV) of Dimension Stones Using Non-Destructive Testing Methods

dc.contributor.author Koken, Ekin
dc.date.accessioned 2025-09-25T10:44:39Z
dc.date.available 2025-09-25T10:44:39Z
dc.date.issued 2025
dc.description Koken, Ekin/0000-0003-0178-329X en_US
dc.description.abstract Due to the global demand for dimension stones, fast and reliable evaluation tools are essential for assessing the quality of dimension stones. For this reason, this study aims to develop comprehensive tools for estimating the abrasion resistance of various dimension stones from Turkey. Non-destructive rock properties, including dry density (rho d), water absorption by weight (wa), and pulse wave velocity (Vp), were determined to build a comprehensive database for soft computing analyses. Three predictive models were established using multivariate adaptive regression spline (MARS), M5P, and artificial neural networks (ANN) methodologies. The performance of the models was assessed through scatter plots and statistical indicators, showing that the ANN-based model outperforms those based on M5P and MARS. The applicability of the models was further validated with independent data from the existing literature, confirming that all models are suitable for estimating varying B & ouml;hme abrasion values (BAVs). A MATLAB-based software tool, called B & ouml;hme abrasion calculator (v1.00), was also developed, allowing users to estimate BAV values by inputting adopted non-destructive rock properties. This tool is available upon request, supporting the dimension stone industry and fostering future research in this field. en_US
dc.identifier.doi 10.3390/app15010060
dc.identifier.issn 2076-3417
dc.identifier.scopus 2-s2.0-85214469908
dc.identifier.uri https://doi.org/10.3390/app15010060
dc.identifier.uri https://hdl.handle.net/20.500.12573/3616
dc.language.iso en en_US
dc.publisher MDPI en_US
dc.relation.ispartof Applied Sciences-Basel en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Dimension Stone en_US
dc.subject Abrasion Resistance en_US
dc.subject Böhme Abrasion Value en_US
dc.subject Predictive Model en_US
dc.subject Soft Computing en_US
dc.title Development of Comprehensive Predictive Models for Evaluating Böhme Abrasion Value (BAV) of Dimension Stones Using Non-Destructive Testing Methods en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Koken, Ekin/0000-0003-0178-329X
gdc.author.institutional Koken, Ekin
gdc.author.scopusid 57193992490
gdc.author.wosid Köken, Ekin/Aaa-5063-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Koken, Ekin] Abdullah Gul Univ, Mat Sci & Nanotechnol Engn Dept, TR-38100 Kayseri, Turkiye en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 60
gdc.description.volume 15 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4405782103
gdc.identifier.wos WOS:001393459400001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.5569307E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Technology
gdc.oaire.keywords böhme abrasion value
gdc.oaire.keywords QH301-705.5
gdc.oaire.keywords dimension stone
gdc.oaire.keywords T
gdc.oaire.keywords Physics
gdc.oaire.keywords QC1-999
gdc.oaire.keywords abrasion resistance
gdc.oaire.keywords soft computing
gdc.oaire.keywords Engineering (General). Civil engineering (General)
gdc.oaire.keywords predictive model
gdc.oaire.keywords Chemistry
gdc.oaire.keywords TA1-2040
gdc.oaire.keywords Biology (General)
gdc.oaire.keywords QD1-999
gdc.oaire.keywords Soft computing
gdc.oaire.keywords Abrasion resistance
gdc.oaire.keywords Böhme abrasion value
gdc.oaire.keywords Predictive model
gdc.oaire.keywords Dimension stone
gdc.oaire.popularity 3.1435319E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.98187933
gdc.openalex.normalizedpercentile 0.67
gdc.opencitations.count 0
gdc.plumx.newscount 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Köken, Ekin
gdc.wos.citedcount 1
relation.isAuthorOfPublication 9352c019-c944-4e23-a8e2-c73fac861cb6
relation.isAuthorOfPublication.latestForDiscovery 9352c019-c944-4e23-a8e2-c73fac861cb6
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 03adf3b0-3511-421e-b492-8fe188140fc0
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files