ROI Detection in Mammogram Images Using Wavelet-Based Haralick and Hog Features

dc.contributor.author Tasdemir, Sena Busra Yengec
dc.contributor.author Tasdemir, Kasim
dc.contributor.author Aydin, Zafer
dc.date.accessioned 2025-09-25T10:56:02Z
dc.date.available 2025-09-25T10:56:02Z
dc.date.issued 2018
dc.description Tasdemir, Kasim/0000-0003-4542-2728 en_US
dc.description.abstract Digital mammography is a widespread medical imaging technique that is used for early detection and diagnosis of breast cancer. Detecting the region of interest (ROI) helps to locate the abnormal areas, which may be analyzed further by a radiologist or a CAD system. In this paper, a new classification method is proposed for ROI detection in mammography images. Features are extracted using Wavelet transform, Haralick and HOG descriptors. To reduce the number of dimensions and eliminate irrelevant features, a wrapper-based feature selection method is implemented. Several feature extraction methods and machine learning classifiers are compared by performing a leave-one-image-out cross-validation experiment on a difficult dataset. The proposed feature extraction method provides the best accuracy of 87.5% and the second-best area under curve (AUC) score of 84% when employed in a random forest classifier. en_US
dc.identifier.doi 10.1109/ICMLA.2018.00023
dc.identifier.isbn 9781538668054
dc.identifier.scopus 2-s2.0-85062235343
dc.identifier.uri https://doi.org/10.1109/ICMLA.2018.00023
dc.identifier.uri https://hdl.handle.net/20.500.12573/4524
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.ispartof 17th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA) -- DEC 17-20, 2018 -- Orlando, FL en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Roi Detection en_US
dc.subject Haralick Features en_US
dc.subject Wavelet Decomposition en_US
dc.subject Random Forest Classifier en_US
dc.title ROI Detection in Mammogram Images Using Wavelet-Based Haralick and Hog Features en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.id Tasdemir, Kasim/0000-0003-4542-2728
gdc.author.scopusid 57207104464
gdc.author.scopusid 26538758900
gdc.author.scopusid 7003852510
gdc.author.wosid Tasdemir, Kasim/Aga-4286-2022
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Tasdemir, Sena Busra Yengec; Tasdemir, Kasim; Aydin, Zafer] Abdullah Gul Univ, Dept Comp Sci, Kayseri, Turkey en_US
gdc.description.endpage 109 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 105 en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W2908977911
gdc.identifier.wos WOS:000463034400015
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 8.0
gdc.oaire.influence 3.3080743E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 5.5502873E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 2.97843689
gdc.openalex.normalizedpercentile 0.92
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 11
gdc.plumx.crossrefcites 5
gdc.plumx.mendeley 27
gdc.plumx.scopuscites 20
gdc.scopus.citedcount 20
gdc.virtual.author Aydın, Zafer
gdc.wos.citedcount 11
relation.isAuthorOfPublication a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isAuthorOfPublication.latestForDiscovery a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files