Emotional State Sensing by Using Hybrid Multivariate Empirical Mode Decomposition and Synchrosqueezing Transform

dc.contributor.author Ozel, Pinar
dc.contributor.author Akan, Aydin
dc.contributor.author Yilmaz, Bulent
dc.date.accessioned 2025-09-25T10:37:15Z
dc.date.available 2025-09-25T10:37:15Z
dc.date.issued 2018
dc.description.abstract In recent years, utilizing Hilbert-based time frequency methods in emotional state sensing research attracted attention in the brain computer interfaces. Primarily, Hilbert Transform-based empirical mode decomposition (EMD) was found to be suitable for emotional state modeling studies. In more recent studies, models of emotional state recognition were proposed in which the classification was implemented by using the features obtained after applying the time, frequency, and time frequency domain methods to intrinsic mode functions achieved by operating EMD. In this study, an analysis of emotional state recognition is proposed by using the features of the synchrosqueezing coefficients obtained in the classification process after applying the Synchrosqueezing Transform to intrinsic mode functions achieved by using Multivariate EMD. As a result, EEG data available in the DEAP database were categorized as low and high for valence, activation, and dominance dimensions, and 4 different classifiers were utilized in the classification process. The most satisfying ratios of valence, activation and dominance were attained 76%, 68%, and 68% respectively. en_US
dc.identifier.doi 10.1109/TIPTEKNO.2018.8596936
dc.identifier.isbn 9781538668528
dc.identifier.scopus 2-s2.0-85061723340
dc.identifier.uri https://doi.org/10.1109/TIPTEKNO.2018.8596936
dc.identifier.uri https://hdl.handle.net/20.500.12573/2942
dc.language.iso tr en_US
dc.publisher IEEE en_US
dc.relation.ispartof Medical Technologies National Congress (TIPTEKNO) -- NOV 08-10, 2018 -- Magusa, CYPRUS en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Emotional State Analysis en_US
dc.subject EEG en_US
dc.subject Multivariate Emprical Mode Decomposition en_US
dc.subject Synchrosqueezing Transform en_US
dc.title Emotional State Sensing by Using Hybrid Multivariate Empirical Mode Decomposition and Synchrosqueezing Transform en_US
dc.title.alternative Emotional State Sensing by Using Hybrid Multivariate Empirical Mode Decomposition and Synchrosqueezing Transform en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 24544550200
gdc.author.scopusid 35617283100
gdc.author.scopusid 57189925966
gdc.author.wosid Akan, Aydin/P-3068-2019
gdc.author.wosid Yılmaz, Bülent/Acr-8602-2022
gdc.author.wosid Özel, Pınar/Afh-4560-2022
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial true
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Ozel, Pinar] Nevsehir Haci Bektas Veli Univ, Elekt Elekt Muhendisligi Bolumu, Nevsehir, Turkey; [Akan, Aydin] Izmir Katip Celebi Univ, Biyomed Muhendisligi Bolumu, Izmir, Turkey; [Yilmaz, Bulent] Abdullah Gul Univ, Elekt Elekt Muhendisligi Bolumu, Kayseri, Turkey en_US
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W2909873588
gdc.identifier.wos WOS:000467637600035
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.577343E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.8925659E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 0.14478251
gdc.openalex.normalizedpercentile 0.49
gdc.opencitations.count 1
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 7
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.wos.citedcount 0
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files