Can Artificial Intelligence and Green Finance Affect Economic Cycles?

dc.contributor.author Chishti, Muhammad Zubair
dc.contributor.author Dogan, Eyup
dc.contributor.author Binsaeed, Rima H.
dc.date.accessioned 2025-09-25T10:42:06Z
dc.date.available 2025-09-25T10:42:06Z
dc.date.issued 2024
dc.description.abstract The COVID-19 recession and the Ukraine-Russia War (URW) crisis have added a new layer of complexity to global economic cycles, necessitating the evolution of economic systems and proactive responses to emerging economic challenges. In this context, the recent article introduces artificial intelligence (AI) as a new driver of economic cycles and analyzes its dynamic role alongside the Belt and Road Initiative (BRI), the Paris Agreement (PA), green finance (GB), and economic shocks (ES) in determining global economic cycles. The article employs novel econometric tools, namely the CAViaR-TVP-VAR model, the Quantile Coherence method, panel Quantile on Quantile Kernel-Based Regularized Least Squares (PQQKRLS), and the Quantile-Quantile Granger causality (QQGC) test for robust findings. The outcomes reveal that AI influences economic cycles in the short run while significantly mitigating these cycles in the medium and long run. Furthermore, the BRI exhibits a positive link with economic cycles during the short and medium run; however, it can contribute to economic stability in the long run by impeding economic fluctuations. Similarly, green finance and the PA show mixed influences across various time horizons, except for the long run, which confirms their negative association with economic cycles. Additionally, ES has a direct link with economic cycles across most periods. The robustness check based on the QQGC test and PQQKRLS method supports the main results. Our results identify AI, BRI, and the PA as new drivers of economic cycles with the potential to counter global economic cycles. Therefore, based on these findings, the study proposes several policy implications tailored to different time horizons. en_US
dc.description.sponsorship King Saud University, Saudi Arabia [RSP2024R203] en_US
dc.description.sponsorship This work has been supported by the Researchers Supporting Project RSP2024R203, King Saud University, Saudi Arabia. en_US
dc.identifier.doi 10.1016/j.techfore.2024.123740
dc.identifier.issn 0040-1625
dc.identifier.issn 1873-5509
dc.identifier.scopus 2-s2.0-85203443690
dc.identifier.uri https://doi.org/10.1016/j.techfore.2024.123740
dc.identifier.uri https://hdl.handle.net/20.500.12573/3413
dc.language.iso en en_US
dc.publisher Elsevier Science inc en_US
dc.relation.ispartof Technological Forecasting and Social Change en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Economic Cycles en_US
dc.subject Artificial Intelligence en_US
dc.subject Green Finance en_US
dc.subject Quantile Coherence Method en_US
dc.subject Machine Learning en_US
dc.subject Panel Qqkrls Method en_US
dc.title Can Artificial Intelligence and Green Finance Affect Economic Cycles? en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57216248707
gdc.author.scopusid 56088161200
gdc.author.scopusid 57223363719
gdc.author.wosid Binsaeed, Rima/Kpy-2671-2024
gdc.author.wosid Chishti, Muhammad Zubair/Aap-1992-2020
gdc.author.wosid Dogan, Eyup/J-8676-2019
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Chishti, Muhammad Zubair] Zhengzhou Univ, Business Sch, Zhengzhou 450001, Henan, Peoples R China; [Dogan, Eyup] Abdullah Gul Univ, Dept Econ, Kayseri, Turkiye; [Binsaeed, Rima H.] King Saud Univ, Dept Management, Riyadh, Saudi Arabia en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 123740
gdc.description.volume 209 en_US
gdc.description.woscitationindex Social Science Citation Index
gdc.description.wosquality Q1
gdc.identifier.openalex W4402347182
gdc.identifier.wos WOS:001312257900001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 24.0
gdc.oaire.influence 3.2422414E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.9684517E-8
gdc.oaire.publicfunded false
gdc.openalex.fwci 24.99189513
gdc.openalex.normalizedpercentile 0.99
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 0
gdc.plumx.mendeley 85
gdc.plumx.scopuscites 23
gdc.scopus.citedcount 23
gdc.virtual.author Doğan, Eyüp
gdc.wos.citedcount 17
relation.isAuthorOfPublication ce550f72-e658-4f7a-b18f-db863e2acaf9
relation.isAuthorOfPublication.latestForDiscovery ce550f72-e658-4f7a-b18f-db863e2acaf9
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 0acb04bc-dc44-4d23-bf19-b42148204f24
relation.isOrgUnitOfPublication f2803143-783c-4edc-859a-7a1421d6d5c6
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files