Spec17Tre: A New Dataset in Hardware Security and Using Deep Learning for Detecting Spectre Attacks

dc.contributor.author Aktas-Aydin, Hatice
dc.contributor.author Yalcin, Gulay
dc.date.accessioned 2025-09-25T10:57:25Z
dc.date.available 2025-09-25T10:57:25Z
dc.date.issued 2025
dc.description.abstract Computer performance has become a significant subject of study due to the processing of big data, the complexity of calculations and the importance of time efficiency. Many companies are improving processor operating principles to increase performance. The most common methods for this purpose are speculative execution and cache usage. While these techniques improve performance, they also introduce certain security vulnerabilities. Spectre is an attack that exploits vulnerabilities created by speculative execution, affecting all modern processor architectures. Research has shown that using machine learning to detect these attacks can be quite effective, although the features are typically gathered at the software level, which may limit detection since some performance parameters are not conveyed to the software. This study presents an analysis of Spectre attacks and their detection using machine learning and deep learning methods at the hardware level. Experiments are conducted using GEM5, a full-system hardware simulator, to ensure that only hardware-visible performance parameters are also collected. Attack detection is performed using Support Vector Machine (SVM) and Long Short-Term Memory (LSTM) methods. The LSTM method is used in conjunction with SVM and Convolutional Neural Network (CNN) techniques, and all models were tested on a new dataset, Spec17Tre, created using "519.lbm" from the SPEC CPU2017 benchmarks. The study achieved a 95% accuracy rate in attack detection using the LSTM + CNN hybrid model, which also yielded an F1 score of 0.999 for detecting applied Spectre attack scenarios. en_US
dc.description.sponsorship The Scientific and Technological Research Council of Trkiye (TBIdot;TAK) [123E017]; Scientific and Technological Research Council of Turkey (TUBITAK); TUBITAK en_US
dc.description.sponsorship This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant Number 123E017. The authors thank TUBITAK for their support. en_US
dc.identifier.doi 10.1007/s13369-025-10215-9
dc.identifier.issn 2193-567X
dc.identifier.issn 2191-4281
dc.identifier.scopus 2-s2.0-105005981411
dc.identifier.uri https://doi.org/10.1007/s13369-025-10215-9
dc.identifier.uri https://hdl.handle.net/20.500.12573/4669
dc.language.iso en en_US
dc.publisher Springer Heidelberg en_US
dc.relation.ispartof Arabian Journal for Science and Engineering en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Spectre en_US
dc.subject Hardware Security en_US
dc.subject Deep Learning en_US
dc.subject Lstm en_US
dc.title Spec17Tre: A New Dataset in Hardware Security and Using Deep Learning for Detecting Spectre Attacks en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 59911745700
gdc.author.scopusid 23029394200
gdc.author.wosid Aktas- Aydin, Hatice/Ivv-2764-2023
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Aktas-Aydin, Hatice] Sivas Univ Sci & Technol, Dept Comp Engn, TR-58000 Sivas, Turkiye; [Yalcin, Gulay] Abdullah Gul Univ, Dept Comp Engn, TR-38000 Kayseri, Turkiye en_US
gdc.description.endpage 19518
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 19507
gdc.description.volume 50
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4410559234
gdc.identifier.wos WOS:001492495800001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.7494755E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.13
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Yalçın Alkan, Gülay
gdc.wos.citedcount 0
relation.isAuthorOfPublication e0dc9e40-f936-402f-96c6-f4e668a0b9d3
relation.isAuthorOfPublication.latestForDiscovery e0dc9e40-f936-402f-96c6-f4e668a0b9d3
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files