A Novel Integration of Mcdm Methods and Bayesian Networks: The Case of Incomplete Expert Knowledge

dc.contributor.author Kaya, Rukiye
dc.contributor.author Salhi, Said
dc.contributor.author Spiegler, Virginia
dc.date.accessioned 2025-09-25T10:39:19Z
dc.date.available 2025-09-25T10:39:19Z
dc.date.issued 2023
dc.description Kaya, Rukiye/0009-0003-5881-0305; en_US
dc.description.abstract In this study, we propose an effective integration of multi criteria decision making methods and Bayesian networks (BN) that incorporates expert knowledge. The novelty of this approach is that it provides decision support in case the experts have partial knowledge. We use decision-making trial and evaluation laboratory (DEMATEL) to elicit the causal graph of the BN based on the causal knowledge of the experts. BN provides the evaluation of alternatives based on the decision criteria which make up the initial decision matrix of the technique for order of preference by similarity to the ideal solution (TOPSIS). We then parameterize BN using Ranked Nodes which allows the experts to submit their knowledge with linguistic expressions. We propose the analytical hierarchy process to determine the weights of the decision criteria and TOPSIS to rank the alternatives. A supplier selection case study is conducted to illustrate the effectiveness of the proposed approach. Two evaluation measures, namely, the number of mismatches and the distance due to the mismatch are developed to assess the performance of the proposed approach. A scenario analysis with 5% to 20% of missing values with an increment of 5% is conducted to demonstrate that our approach remains robust as the level of missing values increases. en_US
dc.description.sponsorship Turkish government en_US
dc.description.sponsorship The first author is grateful for the Turkish government for the PhD scholarship. The authors are also grateful to the referees for their invaluable comments and suggestions that improved both the content as well as the presentation of the paper. en_US
dc.identifier.doi 10.1007/s10479-022-04996-7
dc.identifier.issn 0254-5330
dc.identifier.issn 1572-9338
dc.identifier.scopus 2-s2.0-85139637023
dc.identifier.uri https://doi.org/10.1007/s10479-022-04996-7
dc.identifier.uri https://hdl.handle.net/20.500.12573/3125
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Annals of Operations Research en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Multi Criteria Decision Making Methods en_US
dc.subject Bayesian Networks en_US
dc.subject Incomplete Expert Knowledge en_US
dc.subject Posterior Probability en_US
dc.subject Ranked Nodes en_US
dc.subject Supplier Selection en_US
dc.title A Novel Integration of Mcdm Methods and Bayesian Networks: The Case of Incomplete Expert Knowledge en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Kaya, Rukiye/0009-0003-5881-0305
gdc.author.scopusid 57209215893
gdc.author.scopusid 56194863700
gdc.author.scopusid 55444103700
gdc.author.wosid Kaya, Rukiye/Htq-4535-2023
gdc.author.wosid Spiegler, Virginia/I-2294-2019
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Kaya, Rukiye; Salhi, Said; Spiegler, Virginia] Univ Kent, Ctr Logist & Heurist Optimisat, Kent Business Sch, Canterbury CT2 7FS, Kent, England; [Kaya, Rukiye] Abdullah Gul Univ, Dept Ind Engn, Kayseri, Turkey en_US
gdc.description.endpage 234 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 205 en_US
gdc.description.volume 320 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4303986159
gdc.identifier.wos WOS:000865721600002
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.downloads 96
gdc.oaire.impulse 19.0
gdc.oaire.influence 2.9940732E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Multi criteria decision making methods
gdc.oaire.keywords Bayesian networks
gdc.oaire.keywords Incomplete expert knowledge
gdc.oaire.keywords Ranked nodes
gdc.oaire.keywords Posterior probability
gdc.oaire.keywords Supplier selection
gdc.oaire.keywords Management decision making, including multiple objectives
gdc.oaire.keywords ranked nodes
gdc.oaire.keywords incomplete expert knowledge
gdc.oaire.keywords posterior probability
gdc.oaire.keywords multi criteria decision making methods
gdc.oaire.keywords supplier selection
gdc.oaire.popularity 1.6064288E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.views 123
gdc.openalex.collaboration International
gdc.openalex.fwci 3.80930915
gdc.openalex.normalizedpercentile 0.92
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 12
gdc.plumx.mendeley 59
gdc.plumx.scopuscites 19
gdc.scopus.citedcount 19
gdc.virtual.author Kaya, Rukiye
gdc.wos.citedcount 17
relation.isAuthorOfPublication e4613350-87bc-4a27-956b-740fd0d03630
relation.isAuthorOfPublication.latestForDiscovery e4613350-87bc-4a27-956b-740fd0d03630
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication bfbb34b6-53fb-4fb8-89e7-aa2f0299e86b
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files