A Novel Integration of Mcdm Methods and Bayesian Networks: The Case of Incomplete Expert Knowledge
| dc.contributor.author | Kaya, Rukiye | |
| dc.contributor.author | Salhi, Said | |
| dc.contributor.author | Spiegler, Virginia | |
| dc.date.accessioned | 2025-09-25T10:39:19Z | |
| dc.date.available | 2025-09-25T10:39:19Z | |
| dc.date.issued | 2023 | |
| dc.description | Kaya, Rukiye/0009-0003-5881-0305; | en_US |
| dc.description.abstract | In this study, we propose an effective integration of multi criteria decision making methods and Bayesian networks (BN) that incorporates expert knowledge. The novelty of this approach is that it provides decision support in case the experts have partial knowledge. We use decision-making trial and evaluation laboratory (DEMATEL) to elicit the causal graph of the BN based on the causal knowledge of the experts. BN provides the evaluation of alternatives based on the decision criteria which make up the initial decision matrix of the technique for order of preference by similarity to the ideal solution (TOPSIS). We then parameterize BN using Ranked Nodes which allows the experts to submit their knowledge with linguistic expressions. We propose the analytical hierarchy process to determine the weights of the decision criteria and TOPSIS to rank the alternatives. A supplier selection case study is conducted to illustrate the effectiveness of the proposed approach. Two evaluation measures, namely, the number of mismatches and the distance due to the mismatch are developed to assess the performance of the proposed approach. A scenario analysis with 5% to 20% of missing values with an increment of 5% is conducted to demonstrate that our approach remains robust as the level of missing values increases. | en_US |
| dc.description.sponsorship | Turkish government | en_US |
| dc.description.sponsorship | The first author is grateful for the Turkish government for the PhD scholarship. The authors are also grateful to the referees for their invaluable comments and suggestions that improved both the content as well as the presentation of the paper. | en_US |
| dc.identifier.doi | 10.1007/s10479-022-04996-7 | |
| dc.identifier.issn | 0254-5330 | |
| dc.identifier.issn | 1572-9338 | |
| dc.identifier.scopus | 2-s2.0-85139637023 | |
| dc.identifier.uri | https://doi.org/10.1007/s10479-022-04996-7 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/3125 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.relation.ispartof | Annals of Operations Research | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Multi Criteria Decision Making Methods | en_US |
| dc.subject | Bayesian Networks | en_US |
| dc.subject | Incomplete Expert Knowledge | en_US |
| dc.subject | Posterior Probability | en_US |
| dc.subject | Ranked Nodes | en_US |
| dc.subject | Supplier Selection | en_US |
| dc.title | A Novel Integration of Mcdm Methods and Bayesian Networks: The Case of Incomplete Expert Knowledge | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Kaya, Rukiye/0009-0003-5881-0305 | |
| gdc.author.scopusid | 57209215893 | |
| gdc.author.scopusid | 56194863700 | |
| gdc.author.scopusid | 55444103700 | |
| gdc.author.wosid | Kaya, Rukiye/Htq-4535-2023 | |
| gdc.author.wosid | Spiegler, Virginia/I-2294-2019 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Kaya, Rukiye; Salhi, Said; Spiegler, Virginia] Univ Kent, Ctr Logist & Heurist Optimisat, Kent Business Sch, Canterbury CT2 7FS, Kent, England; [Kaya, Rukiye] Abdullah Gul Univ, Dept Ind Engn, Kayseri, Turkey | en_US |
| gdc.description.endpage | 234 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 205 | en_US |
| gdc.description.volume | 320 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W4303986159 | |
| gdc.identifier.wos | WOS:000865721600002 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | HYBRID | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.downloads | 96 | |
| gdc.oaire.impulse | 19.0 | |
| gdc.oaire.influence | 2.9940732E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Multi criteria decision making methods | |
| gdc.oaire.keywords | Bayesian networks | |
| gdc.oaire.keywords | Incomplete expert knowledge | |
| gdc.oaire.keywords | Ranked nodes | |
| gdc.oaire.keywords | Posterior probability | |
| gdc.oaire.keywords | Supplier selection | |
| gdc.oaire.keywords | Management decision making, including multiple objectives | |
| gdc.oaire.keywords | ranked nodes | |
| gdc.oaire.keywords | incomplete expert knowledge | |
| gdc.oaire.keywords | posterior probability | |
| gdc.oaire.keywords | multi criteria decision making methods | |
| gdc.oaire.keywords | supplier selection | |
| gdc.oaire.popularity | 1.6064288E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0211 other engineering and technologies | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.views | 123 | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 3.80930915 | |
| gdc.openalex.normalizedpercentile | 0.92 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 12 | |
| gdc.plumx.mendeley | 59 | |
| gdc.plumx.scopuscites | 19 | |
| gdc.scopus.citedcount | 19 | |
| gdc.virtual.author | Kaya, Rukiye | |
| gdc.wos.citedcount | 17 | |
| relation.isAuthorOfPublication | e4613350-87bc-4a27-956b-740fd0d03630 | |
| relation.isAuthorOfPublication.latestForDiscovery | e4613350-87bc-4a27-956b-740fd0d03630 | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication | bfbb34b6-53fb-4fb8-89e7-aa2f0299e86b | |
| relation.isOrgUnitOfPublication | ef13a800-4c99-4124-81e0-3e25b33c0c2b | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
