NSEM: Duygu Analizi için Özgün Yıǧınlanmiş Topluluk Yöntemi

dc.contributor.author Işik, Yunus Emre
dc.contributor.author Görmez, Yasin
dc.contributor.author Kaynar, Oǧuz
dc.contributor.author Aydin, Zafer
dc.date.accessioned 2025-09-25T10:37:41Z
dc.date.available 2025-09-25T10:37:41Z
dc.date.issued 2019
dc.description.abstract Today, people often share their ideas, opinions and feelings through forums, social media sites, blogs and similar platforms. For this reason, access to these data has become very easy. Increase in the number of shares makes it possible to analyze and use these data in terms of marketing and politics. However, due to the large number of data, it is impossible that this analysis will be done by humans. Determination of what type of emotion is included automatically is done by sentiment analysis methods. In these methods, the text is defined as a mathematical vector and classified by machine learning methods. Ensemble methods are one of the most important methods used as classifiers in sentiment analysis. In these methods, a classifier error is tried to be solved by another classifier. In sentiment analysis, the feature vector that describes the text is as important as the classifier. Feature vectors obtained using different methods can make mistakes in different places. For this reason, in this study, NSEM is proposed for sentiment analysis, which is a new ensemble method that uses 2 different classifiers and 2 different feature extraction methods. As a result of the analysis, the proposed method is the most successful method with an accuracy rate of 79.1%. © 2019 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1109/IDAP.2018.8620913
dc.identifier.isbn 9781538668788
dc.identifier.scopus 2-s2.0-85062547659
dc.identifier.uri https://doi.org/10.1109/IDAP.2018.8620913
dc.identifier.uri https://hdl.handle.net/20.500.12573/2984
dc.language.iso tr en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof -- 2018 International Conference on Artificial Intelligence and Data Processing, IDAP 2018 -- Malatya; Inonu University, Turgut Ozal Conference Halls -- 144523 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Ensemble Method en_US
dc.subject Machine Learning en_US
dc.subject Sentiment Analysis en_US
dc.subject Stacked Ensemble Methods en_US
dc.subject Data Handling en_US
dc.subject Data Mining en_US
dc.subject Learning Systems en_US
dc.subject Machine Learning en_US
dc.subject Sentiment Analysis en_US
dc.subject Accuracy Rate en_US
dc.subject Ensemble Methods en_US
dc.subject Feature Extraction Methods en_US
dc.subject Feature Vectors en_US
dc.subject Machine Learning Methods en_US
dc.subject Number of Datum en_US
dc.subject Social Media en_US
dc.subject Classification (Of Information) en_US
dc.title NSEM: Duygu Analizi için Özgün Yıǧınlanmiş Topluluk Yöntemi en_US
dc.title.alternative NSEM: Novel Stacked Ensemble Method for Sentiment Analysis en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57195215625
gdc.author.scopusid 57195222392
gdc.author.scopusid 36559569000
gdc.author.scopusid 7003852510
gdc.author.wosid Işik, Yunus/Jep-8357-2023
gdc.author.wosid Görmez, Yasin/Jef-8096-2023
gdc.author.wosid Kaynar, Oguz/A-6474-2018
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Işik] Yunus Emre, Yönetim Bilişim Sistemleri, Cumhuriyet Üniversitesi, Sivas, Turkey; [Görmez] Yasin, Yönetim Bilişim Sistemleri, Cumhuriyet Üniversitesi, Sivas, Turkey; [Kaynar] Oǧuz, Yönetim Bilişim Sistemleri, Cumhuriyet Üniversitesi, Sivas, Turkey; [Aydin] Zafer, Bilgisayar Mühendisliǧi, Abdullah Gül Üniversitesi, Kayseri, Turkey en_US
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W2914928955
gdc.identifier.wos WOS:000458717400190
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.6730813E-9
gdc.oaire.isgreen false
gdc.oaire.keywords machine learning
gdc.oaire.keywords sentiment analysis
gdc.oaire.keywords stacked ensemble methods
gdc.oaire.keywords ensemble method
gdc.oaire.popularity 4.251062E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 1.38993721
gdc.openalex.normalizedpercentile 0.84
gdc.opencitations.count 5
gdc.plumx.mendeley 18
gdc.plumx.newscount 1
gdc.plumx.scopuscites 12
gdc.scopus.citedcount 13
gdc.virtual.author Aydın, Zafer
gdc.wos.citedcount 3
relation.isAuthorOfPublication a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isAuthorOfPublication.latestForDiscovery a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files