Genç, Sinan
Loading...
Profile URL
Name Variants
Genc, S.
Genc, Sinan
Genç, Sinan
Genc, Sinan
Genç, Sinan
Job Title
Arş. Gör.
Email Address
sinan.genc@agu.edu.tr
Main Affiliation
02.05. Elektrik & Elektronik Mühendisliği
Status
Current Staff
Website
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Sustainable Development Goals
7
AFFORDABLE AND CLEAN ENERGY

3
Research Products
9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

6
Research Products
14
LIFE BELOW WATER

1
Research Products

Documents
11
Citations
109
h-index
5

Documents
11
Citations
103

Scholarly Output
13
Articles
7
Views / Downloads
1457/550
Supervised MSc Theses
1
Supervised PhD Theses
1
WoS Citation Count
103
Scopus Citation Count
109
WoS h-index
5
Scopus h-index
5
Patents
0
Projects
2
WoS Citations per Publication
7.92
Scopus Citations per Publication
8.38
Open Access Source
4
Supervised Theses
2
Google Analytics Visitor Traffic
| Journal | Count |
|---|---|
| 2024 IEEE Photonics Conference -- NOV 10-14, 2024 -- Rome, ITALY | 1 |
| -- 30th Annual Conference of the IEEE Photonics Society, IPC 2017 -- Lake Buena Vista; FL; Hilton Orlando Lake Buena Vista -- 132705 | 1 |
| -- 31st Annual Conference of the IEEE Photonics Society, IPC 2018 -- Reston; VA; Hilton Regency Reston -- 142273 | 1 |
| Journal of Materials Chemistry C | 1 |
| Journal of Physics D-Applied Physics | 1 |
Current Page: 1 / 2
Scopus Quartile Distribution
Competency Cloud

Scholarly Output Search Results
Now showing 1 - 10 of 13
Article Citation - WoS: 11Citation - Scopus: 10Trans-Cis Isomerization Assisted Synthesis of Solution-Processable Yellow Fluorescent Maleic Anhydrides for White-Light Generation(Elsevier Science SA, 2015) Ozdemir, Mehmet; Genc, Sinan; Ozdemir, Resul; Altintas, Yemliha; Citir, Murat; Sen, Unal; Usta, HakanHeterocyclic maleic anhydride derivatives have been extensively studied in natural products chemistry over the past few decades. However, their incorporation into optoelectronic devices has lagged behind that of other pi-conjugated systems, and they have never been studied in white light emitting diodes (WLEDs). The development of emissive pi-conjugated materials for (WLEDs) has been an emerging scientific and technological research area to replace phosphors used in LED-based solid-state lighting. Here, we demonstrate the design, synthesis and characterization of two new highly emissive alkyl-substituted bis(thienyl)maleic anhydrides (C6-Th2MA and C12-Th2MA) with favorable photophysical properties. The new core is synthesized via a novel trans-to-cis isomerization-assisted one-pot reaction, which is demonstrated for the first time in the literature for the synthesis of a bis(heteroaryl)maleic anhydride. Due to its favorable absorption and fluorescence properties in the blue and yellow region of the visible spectrum, respectively, C12-Th2MA is studied as a potential wavelength-upconverting material. A WLED fabricated by drop-casting a polymeric solution of C12-Th2MA on a blue LED (InGaN, 455 nm) yields promising CIE coordinates and color-rendering index (CRI) values of (0.24, 0.20) and 65.0, respectively. Considering the simplicity of the current molecular structure and facile synthesis, alkyl-substituted bis(thienyl)maleic anhydrides stand as ideal phosphor alternatives. Therefore, the current findings may open new perspectives for the development of maleic anhydride-based small molecules for low-cost, energy-efficient, and solution-processed lighting technologies. (C) 2015 Elsevier B.V. All rights reserved.Article Citation - WoS: 9Citation - Scopus: 10Numerical Analysis and Experimental Verification of Optical Scattering From Microplastics(Royal Soc, 2023) Genc, Sinan; Icoz, Kutay; Erdem, TalhaAccurate and fast characterization of the micron-sized plastic particles in aqueous media requires an in-depth understanding of light interaction with these particles. Due to the complexity of Mie scattering theory, the features of the scattered light have rarely been related to the physical properties of these tiny objects. To address this problem, we reveal the relation of the wavelength-dependent optical scattering patterns with the size and refractive index of the particles by numerically studying the angular scattering features. We subsequently present a low-cost setup to measure the optical scattering of the particles. Theoretical investigation shows that the angular distribution of the scattered light by microplastics carries distinct signatures of the particle size and the refractive index. The results can be used to develop a portable, low-cost setup to detect microplastics in water.Conference Object Enhanced Photoluminescence From Quantum Emitter-Nanoplasmonic Antenna Hybridization by a Facile Fabrication Method(IEEE, 2024) Genc, Sinan; Yilmaz, Alpay; Fernandez, Carlos Rodriguez; Caglayan, Humeyra; Bek, AlpanGaps between tiny metallic nanostructures create strong local fields and small mode volumes, known as hybrid plasmonic modes. This study introduces a nanocavity formed by silver nanoparticles on a gold substrate with hexagonal boron nitride flakes, boosting quantum emitters' spontaneous emission and photoluminescence yield.Conference Object Citation - Scopus: 1Color Simulation and Demonstration of Perovskite Nanocrystal Filters for Wide Color Gamut Displays(Institute of Electrical and Electronics Engineers Inc., 2018) Genc, Sinan; Yazici, Ahmet F.; Beskazak, Emre; Uran, Can; Mutlugün, EvrenIn this study, we define spectral parameters of perovskite nanocrystals to improve LCD color gamut, replacing color filters (CFs) with perovskite based subpixels. The optimization of the CFs has been enhanced 15.8% (98.43% of Rec.2020) in simulation and 13.8% experimentally, with 97.37% color gamut coverage. © 2019 Elsevier B.V., All rights reserved.Article Citation - WoS: 4Citation - Scopus: 4Rec. 2100 Color Gamut Revelation Using Spectrally Ultranarrow Emitters(SPIE - Society of Photo-Optical Instrumentation Engineers, 2017) Genc, Sinan; Uguz, Mustafa; Yilmaz, Osman; Mutlugun, EvrenWe theoretically simulate the performance of ultranarrow emitters for the first time to achieve record high coverage for the International Telecommunication Union Radiocommunication Sector BT. 2100 (Rec. 2100) and National Television System Committee (NTSC) color gamut. Our results, employing more than 130-m parameter sets, include the investigation into peak emission wavelength and full width at half maximum (FWHM) values for three primaries that show ultranarrow emitters, i.e., nanoplatelets are potentially promising materials to fully cover the Rec. 2100 color gamut. Using ultranarrow emitters having FWHM as low as 6 nm can provide the ability to attain 99.7% coverage area of the Rec. 2100 color gamut as well as increasing the NTSC triangle to 133.7% with full coverage. The parameter set that provides possibility to fully reach Rec. 2100 also has been shown to match with D65 white light by making use of the correct combination of those three primaries. Furthermore, we investigate the effect of the fourth color component on the CIE 1931 color space without sacrificing the achieved coverage percentages. The investigation into the fourth color component, cyan, is shown for the first time to enhance the Rec. 2100 gamut area to 127.7% with 99.9% coverage. The fourth color component also provides an NTSC coverage ratio of 171.5%. The investigation into the potential of emitters with ultranarrow emission bandwidth holds great promise for future display applications. (C) 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)Master Thesis Verimli Aydınlatma ve Ekran Teknolojileri için Fotometrik Modellemelerin Gerçekleştirilmesi(Abdullah Gül Üniversitesi, 2016) GENÇ, SİNAN; Genç, Sinan; Mutlugün, EvrenAydınlatma elemanı olarak ışık saçan diyotların (LED) kullanımı, enerji verimliliği bağlamında zorunlu bir adım olarak ortaya çıkmıştır. Dünya çapında üretilen toplam enerjinin yaklaşık %25'i aydınlatma için kullanılmaktadır. Akkor telli ampullerin aydınlatma elemanı olarak kullanılması Avrupa'nın büyük bir kısmında yasaklanmış ve ışık saçan diyotlar en popüler seçenek olarak bu açığı doldurmuştur. Hem aydınlatma seviyesi hem de enerji verimliliği açısından yüksek performanslı oluşları, daha verimli hale getirilebilmeleri için yeni bir araştırma alanı ortaya çıkarmıştır. Yüksek kaliteli beyaz ışık kullanıldığı ortama göre farklı özellikler gerektirir ve beyaz ışığı oluşturan renk bileşenlerini optimize ederek bu gerekliliklerin sağlanması, bu tezin temel amaçlarından biridir. Ekran teknolojisinde, tüplü televizyonlardan (CRT), organic ışık saçan diyot (OLED) ürünlere gelişme süreci, hem ekran kalitesi hem de enerji verimliliği performansını arttırmıştır. Ekranlardaki renk skalasının, insan gözüyle algılanabilen skalaya doğru genişlemesi temel amaç olduğundan, referans alınan skala sistematik bir şekilde genişlemektedir. Literatürdeki son referans, Rec.2020, insan gözüyle algılanabilen renklerin üçte ikisini kapsamaktadır. Bu tezde, kullanımda olan NTSC renk skalası gibi referanslar da dikkate alınarak Rec.2020 renk gamının genişletilmesi yeni bir amaç olarak tanımlanmıştır. Bu tezde, istenilen kalitedeki beyaz ışığa ulaşabilmek için, renk bileşenlerinin tepe ışıma dalga boyu, ışıma genişliği ve tepe değeri gibi ışıyıcı parametrelerinin sahip olması gereken değerler araştırılmıştır. Her adımda beyaz ışık elde edilmesine rağmen, dört renk bileşeni ile oluşturulan beyaz ışık simülasyonu yüksek kaliteli beyaz ışık gereklilikleri olan renk eşleme indisi >90, renk sıcaklığı <4000K ve optik yayılmanın ışıksal verimi >380lm/Wopt değerlerini aynı anda sağlamıştır. Ek olarak, ekran teknolojisi bağlamında, Rec.2020 renk referansına ulaşabilmek için kolloidal kuantum noktacıklar gibi dar ışıyıcılar ile birlikte 10nm'den daha dar (ultra dar) ışıyıcıların da kullanılmasının uygunluğu belirtilmiştir. Ultra dar ışıyıcılar ile Rec.2020 üçgeninin %99.89'una ulaşılmış ve bu parametreler kullanılarak NTSC referansı da %99,99'dan daha büyük yüzde ile kapsanmıştır. Beklenildiği üzere, dördüncü renk olarak siyan mavisinin kullanılması NTSC referansına göre ulaşılabilen alanı %169,55'ye çıkarmıştır.Doctoral Thesis Optik Saçılma Temelli Rastgele Orman Destekli Parçacık Tespiti ve Sınıflandırılması(Abdullah Gül Üniversitesi / Fen Bilimleri Enstitüsü, 2023) Genç, Sinan; Genç, Sinan; İçöz, Kutay; Erdem, TalhaMicroplastics, tiny plastic particles with sizes smaller than 5 mm., are often found in oceans, rivers, lakes, and atmosphere due to plastic pollution. Microplastics releasing toxic chemicals threaten the environment and harm the aquatic life and humans. Especially, the accumulation of microplastics can have detrimental effects on the food chain as a result of larger organisms consuming smaller organisms. Detecting the microplastics is crucial but also challenging. Over the years, researchers have developed different detection methods. One of the standard methods is using spectroscopy tools such as Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. These techniques can identify the chemical composition of microplastics, which can help determine their sources and potential impacts. Another method is the use of microscopy, which allows for the visualization and counting of microplastics in samples. However, these techniques require costly infrastructure, and these instruments being large in size significantly limits the mobility. As a remedy to the cost and mobility problems, in this thesis, we propose and demonstrate a low-cost, portable system to detect size, concentration, and refractive index of microplastics. Our system comprises of low-cost and low-weight components which are utilized for recording the scattering patterns of microplastics in aqueous media. We demonstrate successful predictions of the size and refractive index of microparticles at a given wavelength using a Random Forest Algorithm which relates the measured scattering pattern with the Mie theory. We further employ the refractive index information at various wavelengths for determining the material type of microplastics. We believe that our proposed system enabling an easy, fast, low-cost, and on-site detection of microplastics will be a beneficial tool for the fight against microplastics in the environment.Article Citation - WoS: 15Citation - Scopus: 18FRET Enabled Light Harvesting within Quantum Dot Loaded Nanofibers(IOP Publishing Ltd, 2018) Altintas, Yemliha; Kiremitler, Nuri Burak; Genc, Sinan; Onses, M. Serdar; Mutlugun, EvrenThe spatial control of the nano-emitters in novel light harvesting platforms offers great potential for the manipulation of the excitonic interaction amongst the donor-acceptor pairs of energy transferring agents. In this work, we report colloidal quantum dot loaded electrospun nanofibers as a light harvesting platform to study the excitonic interaction among them. The donor emission lifetime modified from 12.46 ns to 7.45 ns with the change in the ratio of green and red quantum dots in the nanofiber, as a result of confining acceptor quantum dots in close proximity. The spectrally narrow emitter luminescent nanofiber platforms have further been investigated for their potential of white light generation. The hybrid platform of blue LED integrated electrospun nanofibers has been shown to demonstrate a correlated color temperature of 3632.5 K, luminous efficacy of optical radiation value of 307.7 lm/W-opt along with color rendering index value of 60.Conference Object Redesign of commercial color filters for color enriched LCD displays(Gdansk University of Technology (GUT),, 2018) Genç, Sinan; Uran, Can; Mutlugün, EvrenHaving as much as different colors on displays is the main aim for a high color gamut LCD. Using conventional backlight systems, a blue LED with a YAG phosphor layer implemented onto it, a high portion of CIE 1931 color space is missed [1,2]. Not only broad emission spectrum of Yttrium Aluminum Garnet (YAG) for yellow light, but also crosstalk of commercial RGB color filters have huge impact of that result. Using quantum dots (QDs) which are promising backlight agents in terms of color quality can increase the number of different colors on displays thanks to their narrow emission spectra, ease in controllability of optical properties and high photoluminescence efficiency [3:5]. However, when it comes to the color filters, broad transmission spectra and crosstalk between those spectra reduces the quality [6]. In this study, we design, simulate, analyze a QD based backlighting system and compare it with conventional phosphor based white light. Simulating both yellow phosphor based LED and QD based LED in software, we engineer spectral parameters i.e. full width at half maximum, peak emission wavelength and intensities of emitters. Furthermore, we investigate the effect of commercial color filters on those two systems and propose a new, industrially appropriate color filter spectra. Using QD based backlight increases the NTSC color gamut area from 65-70% to 127% with more than 99.8% coverage and the negative effect of commercial color filters, around 15% that reduced the gamut ratio to 109%, is balanced with suggested spectral transmission parameters of RGB color filters for QD based backlighting systems.Article Citation - WoS: 51Citation - Scopus: 52CdSe/ZnS Quantum Dot Films for High Performance Flexible Lighting and Display Applications(IOP Publishing Ltd, 2016) Altintas, Yemliha; Genc, Sinan; Talpur, Mohammad Younis; Mutlugun, EvrenColloidal quantum dots have attracted significant interest in recent years for lighting and display applications and have recently appeared in high-end market products. The integration of quantum dots with light emitting diodes has made them promising candidates for superior lighting applications with tunable optical characteristics. In this work we propose and demonstrate high quality colloidal quantum dots in their novel free-standing film forms to allow high quality white light generation to address flexible lighting and display applications. High quality quantum dots have been characterized using transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, steady state and time resolved photoluminescence and dynamic light scattering methods. The engineering of colloidal quantum dot composition and its optical properties in stand-alone film form has led to the experimentally high NTSC color gamut of 122.5 (CIE-1931) for display applications, color rendering index of 88.6, luminous efficacy of optical radiation value of 290 lm/W-opt and color temperature of 2763 K for lighting applications.

