Dinçer, Ali Ersin

Loading...
Profile Picture
Name Variants
Ali Ersin Dinçer
Dincer, A. . Ersin
Dincer, A. E.
Dincer, A. Ersin
Dincer, Ali Ersin
Dinçer, A. Ersin
Dinçer, Ali Ersin
Job Title
Doç. Dr.
Email Address
ersin.dincer@agu.edu.tr
Main Affiliation
02.03. İnşaat Mühendisliği
Status
Current Staff
Website
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Sustainable Development Goals

2

ZERO HUNGER
ZERO HUNGER Logo

4

Research Products

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

1

Research Products

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

1

Research Products

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

9

Research Products

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

4

Research Products

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

1

Research Products

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

7

Research Products

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

4

Research Products

13

CLIMATE ACTION
CLIMATE ACTION Logo

5

Research Products

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

3

Research Products

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo

2

Research Products
Documents

31

Citations

359

h-index

14

Documents

31

Citations

346

Scholarly Output

25

Articles

23

Views / Downloads

97/0

Supervised MSc Theses

0

Supervised PhD Theses

0

WoS Citation Count

262

Scopus Citation Count

286

WoS h-index

12

Scopus h-index

12

Patents

0

Projects

7

WoS Citations per Publication

10.48

Scopus Citations per Publication

11.44

Open Access Source

11

Supervised Theses

0

Google Analytics Visitor Traffic

JournalCount
Natural Hazards2
Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi2
Applied Energy1
Applied Sciences-Basel1
Earth Science Informatics1
Current Page: 1 / 5

Scopus Quartile Distribution

Competency Cloud

GCRIS Competency Cloud

Scholarly Output Search Results

Now showing 1 - 10 of 25
  • Article
    Citation - WoS: 16
    Citation - Scopus: 17
    Enhancing Wind Turbine Site Selection Through a Novel Wake Penalty Criterion
    (Pergamon-Elsevier Science Ltd, 2023) Dincer, A. . Ersin; Demir, A.; Yilmaz, K.
    In this study, a novel approach that incorporates the wake effect as a penalty criterion within the Analytical Hierarchy Process (AHP) method is proposed. The research introduces the wake penalty criterion for the first time, considering both existing and newly located turbines. The results demonstrate the impact of the wake effect and identify areas with varying wake penalties. A comprehensive suitability analysis is conducted using AHP and Geographic Information System (GIS) techniques, resulting in a suitability map for wind turbine site selection. The analysis considers seven criteria, including the novel wake penalty criterion. The suitability map reveals a distribution of suitability ranges, with 73.8% of the total area excluded due to various constraints. Additionally, a comparative analysis is performed by excluding the wake penalty criterion, highlighting the contrasting effects of wake on turbine placement. Case studies in the Karaburun and ces,me regions of Izmir further illustrate the influence of wake on turbine clusters and their alignment with prevailing wind directions. The findings indicate that the inclusion of wake effects provides a more precise and realistic depiction of viable wind turbine site selection. This is evident in the reduction of 55.5% and 18.6% in the most suitable region (80-100% suitability) and highly suitable region (60-80% suitability), respectively.
  • Article
    Enhanced Objectivity of AHP for More Reliable Solar Farm Site Selection
    (Wiley, 2025) Dincer, A. E.; Demir, A.; Yilmaz, K.
    The analytic hierarchy process (AHP) is a popular decision-making method for reliable decisions in different areas of study. Although the conventional AHP method mathematically ensures the consistency of results, the reliability of these results depends on the expert manifests. While AHP was originally proposed for subjectively relatable criteria, there may also be additional objectively relatable criteria or a consensus about the final relation of some couple of criteria. To address these objective relations and/or consensuses, this study proposes the analytic hierarchy process with optimized hierarchy (AHP-OH). This method enhances the reliability of results by satisfying objective relations and/or consensuses about relations between criteria. The AHP-OH methodology was applied to select optimal photovoltaic (PV) farm locations in Konya Province, Turkey, a region characterized by diverse terrain and solar radiation levels. The study incorporated geographic information systems to analyze criteria, such as solar radiation rate, land use, slope, proximity to roads and transmission lines, and restricted areas. Results demonstrated that 2.56% of Konya's terrain is highly (80%-100%) suitable and 19.34% of it has moderately high (60%-80%) suitability for PV farm development, with five highly suitable regions identified. Notably, the locations of existing PV farms aligned closely with the identified suitable zones, validating the efficacy of the AHP-OH approach. This research underscores the importance of objectivity of decision-making methods and proposes AHP-OH to enhance the objectivity of the conventional AHP method. By providing a systematic and objective framework for spatial decision support systems, AHP-OH offers significant advancements for policymakers and developers in the renewable energy sector. Future applications of this methodology can extend to other regions and renewable energy sources, contributing to global efforts in sustainable energy development.
  • Article
    A Sustainable Decision-Making Framework to Evaluate Land and Seaside Disposal Options for Tunnel Spoil: A Case Study of Trabzon
    (Science Press, 2025) Dincer, Ali Ersin; Demir, Abdullah; Ozturk, Sevki; Yilmaz, Kutay
    Sustainable urbanization is essential for developing cities. To ensure the success of planned construction projects, designers must prioritize sustainability by lowering emissions and reducing costs. Tunnel projects are common worldwide, but disposing of the excavated material presents a significant challenge due to unsuitable geographic conditions. While coastal cities with mountainous terrains have historically used spoil for sea filling, this study offers alternative landside options to promote sustainability. By using a conventional analytical hierarchy process (AHP) method for multi-criteria decision-making (MCDM), the study evaluates land use, sustainability, slope, and drainage lines as constraints for the AHP method. The transportation-related greenhouse gas (GHG) emissions are also considered to reduce environmental damage. Particle swarm optimization is used to determine the minimum transportation distance from the excavation zone to the dumpsite. As a sub-criteria of land use, the seaside is also considered a dumpsite compared with other options on the land side. The spatial analysis results of the case study show that suitable landside sites are available for the Trabzon tunneling project. Although coastal areas in Trabzon have been used for spoil dumping for filling purposes in the past, landside deposition is a viable alternative. The suitability ranks of land and coastal filling options are relatively similar, and selecting the seaside as the dumpsite for the Trabzon tunneling project reduces CO2 emissions. By adopting sustainable practices, we can realize a better future for our cities and the environment.
  • Article
    A Fully Coupled Numerical Model for Unbonded Post-Tensioned Timber Structures
    (Springer, 2024) Dincer, A. Ersin; Demir, Abdullah
    The paper presents a fully Lagrangian mesh-free solver to simulate the dynamic behavior of post-tensioned timber structures. Weakly Compressible Smoothed Particle Hydrodynamics (SPH) is employed to model both the timber and the tendon. An efficient and simple coupling method between the timber and the tendon is proposed by considering the numerical stability. Besides, the same coupling algorithm is used to model the interaction between column and beam elements. Although the column is treated as rigid in the simulations, the coupling algorithm accounts for the initial compression of the column resulting from post-tensioning. For the verification of the code for solids and material nonlinearity of timber, benchmark problems available in the literature are used. Finally, the solver's capability is demonstrated through dynamic analysis of post-tensioned timber structures. The solutions obtained for all the cases are in good agreement with the experimental and theoretical data, which indicates the applicability and accuracy of the solver.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 3
    Experimental and Numerical Investigation of Hyper-Elastic Submerged Structures Strengthened With Cable Under Seismic Excitations
    (Taylor & Francis Ltd, 2022) Dincer, A. Ersin
    This study presents dynamic responses of submerged highly elastic structures, strengthened with cable elements and the fluid interacting with the structure. For this purpose, fluid and structure are modelled with smoothed particle hydrodynamics and finite element methods, respectively. The interaction is satisfied with contact mechanics. In order to simulate the cable, a finite element model with a two-node cable element is used. The stiffness obtained from the cable is added to the structure and the whole fluid-structure system is solved together. The novel contribution of the present study is the coupling a two-node cable element model with the fluid-structure interaction method. In order to validate the numerical method, a set of novel experiments is carried out. In the experiments, cable elements are attached to an elastic structure that is placed in a water tank. Near-fault and earthquake excitations are applied to the tank and the displacement of the structure and the free surfaces of the water are recorded. All the results show that the proposed two-dimensional numerical model is capable of modelling the submerged elastic structure strengthened with the cable under the seismic excitations.
  • Article
    Citation - WoS: 16
    Citation - Scopus: 17
    A Novel Procedure for the AHP Method for the Site Selection of Solar PV Farms
    (Wiley, 2024) Demir, Abdullah; Dincer, A. Ersin; Yilmaz, Kutay
    This study proposes a novel approach to enhance the analytic hierarchy process (AHP) for the selection of suitable sites for solar photovoltaic (PV) farms. This approach is particularly beneficial when it is possible to establish a predefined objective relation in the final weights of the AHP method. The methodology focuses on achieving this predefined relation introducing a systematic revision of the constants of related constraints. In this study, the costs of constructing a unit transmission line and road in the Kayseri Province are objectively related, and the initial constant matrix of the AHP method is iteratively revised until the relation of the final weights converges to the predefined one. The suitability of solar PV farm locations is classified into five classes, revealing approximately 28% (40-100% of suitability) of the province as favorably suitable and designating about 67% as restricted zones. The findings reveal notable distinctions between the revised weights and those derived from the conventional AHP method. The disparity in weights for various constraints varies from 13.5% to 7.2%. Consequently, the alterations in the area of suitability regions range from 3.4% to 50%. The revision of AHP weights results in a reduction in higher-suitability areas, coupled with a significant expansion in the region exhibiting lower suitability. Notably, the extent of change in the suitability map increases when the difference in ratios between two criteria obtained from the AHP and the predefined objective relation is high. The proposed method demonstrates its applicability in regions like Kayseri where an objective relation between criteria can be established. Given the inherent subjectivity of the AHP method, the proposed procedure becomes essential to attain more objective weights. Since the methodology objectively adjusts weights based on known ratios, it increases the accuracy and reliability of site selection studies.
  • Article
    Batık Minarelerde Su Seviyesinin Yapıya Olan Etkisinin Sayısal Olarak İncelenmesi
    (2021) Dinçer, Ali Ersin; Demir, Abdullah
    Baraj göllerinin, sular altında bıraktığı yerleşim yerlerinin, su üstünde kalan son mirasları minarelerdir. Türkiye’de iki adet batık minare bulunmaktadır ve su üstünden görülebilmeleri ile cazibe merkezleri haline gelmişlerdir. Uzun yıllar sular altında kalması bu yapıların malzeme kalitesinin düşmesine sebep olmuştur/olacaktır. Bunun yanında; olası bir deprem esnasında var olan zemin hareketine ek olarak suyun çalkalanma etkisinin de eklenmesi bu minarelerin davranışlarının öngörülmesini daha da zorlaştırmaktadır. Yüksek Deprem riski barındıran bölgelerde yer alan her bu yapıların deprem esnasında su ile yapacağı etkileşimin sonuçlarının irdelenmesi gerekmektedir.Bu kapsamda su altında kalan minarelerin davranışlarını incelemek için idealleştirilmiş 2 boyutlu model oluşturulmuş ve yakın fay hareketleri uygulanmıştır. İdealleştirilmiş modelin analizi için tam akupajlı bir yapı-sıvı etkileşim (FSI) modeli kullanılmıştır. Bu modelde yapı kısmın modellenmesi için sonlu elemanlar yöntemi (FEM), sıvı kısmın modellenmesi için ise yumuşatılmış parçacık hidrodinamiği (SPH) kullanılmıştır. Bu iki farklı yöntem ile modellenen alanların etkileşimi için ise kontak mekanik kullanılmıştır. Kullanılan FSI yöntemi birçok problemin çözümü ile doğruluğu kanıtlanan geçerli bir yöntemdir. Farklı su seviyeleri ile oluşturulan idealleştirilmiş modeller, geliştirilen FSI yöntemi ile analiz edilmiş ve sonuçlar karşılaştırmalı olarak sunulmuştur. Elde edilen sonuçlar batık minarelerde su kütlesi etkisinin yakın fay altında ne kadar yüksek olduğunu ortaya koymaktadır. Su seviyesindeki değişim ile bu etki doğal olarak değişim göstermektedir. Çalışma kapsamında farklı su seviyeleri incelenerek batık minareler üzerindeki su kütlesi etkisi ayrıntılı olarak incelenmiştir.
  • Article
    Ardıl Baraj Yıkılmasının Mansapta Bulunan Elastik Yapı Üzerindeki Etkisinin Yapı-Sıvı Etkileşim Yöntemi ile İncelenmesi
    (2020) Dinçer, Ali Ersin; Demir, Abdullah
    Bu çalışmada yazarlar tarafından geliştirilen bir yapı-sıvı etkileşim yöntemi idealize edilmişardıl baraj yıkılması problemi için test edilmiştir. Bu doğrultuda geliştirilen yöntemde, sıvı kısımyumuşatılmış tanecik hidrodinamiği (smoothed particle hydrodynamics - SPH) ile, katı kısım ise sonluelemanlar (finite element – FE) yöntemi ile modellenmiş ve katı ile sıvı arasındaki akupaj, kontakmekanik kullanılarak gerçekleştirilmiştir. Aynı geometrideki ardıl barajlar aralarında mesafebırakmaksızın yerleştirilmiştir. En yüksek konumdaki barajın doluluk oranındaki değişim dikkatealımıştır. Yıkılan barajların mansaptaki elastik bir yapıya etkisi hem yapının deformasyonu yönündenhem de akışkandaki basınç dağılımları yönünden test edilmiştir. Ayrıca serbest akışkan yüzeyi profillerive su hızı profilleri de çalışmada sunulmuştur.
  • Article
    Citation - WoS: 22
    Citation - Scopus: 27
    Exploring Flood and Erosion Risk Indices for Optimal Solar PV Site Selection and Assessing the Influence of Topographic Resolution
    (Pergamon-Elsevier Science Ltd, 2023) Yilmaz, Kutay; Dincer, Ali Ersin; Ayhan, Elif N.
    This study explores the suitability of Mentes,e Region in Turkiye for the installation of solar PV farms, given the significant increase in energy demand in the country and the need to reduce reliance on fossil fuels. The Analytical Hierarchy Process (AHP) method, which has been widely used in previous studies, is employed to identify the most influential criteria for site selection, including environmental, economic, and social factors. However, this study introduces two new factors, flood hazard and erosion indices, to the analysis, which are crucial in areas susceptible to these hazards. The results show that approximately 7.5% of the study surface area is suitable for solar PV production. The study reveals that flood hazard and erosion indices have an effect on the suitable sites despite their relatively lower weights in the AHP. In addition, the study illustrates that site selection can be carried out using topographic data of lower resolution, as long as the data is resampled to match the resolution of land use data. The study is novel in its integration of flood and erosion risk indices in the decision process and its investigation of the influence of topographic resolution on site selection for solar PV panels.
  • Article
    Citation - WoS: 12
    Citation - Scopus: 12
    Numerical and Experimental Investigation of Sloshing in a Water Tank With a Fully Coupled Fluid-Structure Interaction Method
    (Inderscience Enterprises Ltd, 2021) Demir, Abdullah; Dincer, Ali Ersin; Ozturk, Sevki; Kazaz, Ilker
    In the present study, the harmonic movement of fluid flow and the behaviour of elastic structure under this movement are investigated. Accordingly, a recently developed fluid-structure interaction method in which fluid and structure are simulated with smoothed particle hydrodynamics (SPH) and finite element method (FEM) is used. The interaction between fluid and the structure is satisfied with the contact mechanics. In order to validate the numerical model under harmonic movement, different experiments are used. First, the structure is assumed to be rigid and the pressures calculated on the structure are compared with the experimental data available in the literature. Similarly, free-surfaces are also validated with novel experiments carried out in the context of this study. In addition, the interaction between an elastic structure and fluid is investigated in the novel experiments in which a water tank having an elastic buffer in the middle is moved under harmonic horizontal movement and the deflection of the elastic buffer and free-surface profiles are measured. Comprehensive results are given for all validation cases. According to the results, the numerical method is successful and can be used in these types of problems.